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Abstract

Linguistic propagation occurs when one linguistic variant replaces another,
or several others, over time. Evolutionary dynamics provides a formal frame-
work in which to describe and model processes of propagation; employing this
framework, we provide an overview of computational models of propagation
which have been proposed in the literature. These range from simple phe-
nomenological models to more complex models that take geographical space or
social structure into account; both constant-fitness models and models involving
frequency-dependent selection are discussed. Special emphasis is paid on the
epistemological role mechanistic models play as formal apparatuses which can
derive (not just describe) large-scale regularities of language variation and
change from underlying first principles.
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1 Introduction: computational models and the evolutionary dynamics of
language

Linguistic mutations—innovations and “mistakes” which have the potential to
propagate through the speech community and give rise to community-level change—
occur all the time: in first language acquisition, in second language acquisition, and
in the linguistic production of speakers whose grammatical systems have already
stabilized. Only a minority of these innovations, however, actually manage to
propagate—at any given point in time, most aspects of a language are not undergoing
change. What are the factors governing these dynamics? When innovations do
succeed, why do they succeed? What role is played in this by random events, such as
the stochastic nature of speaker-to-speaker interactions? Conversely, to what extent is
the propagation of linguistic mutations governed by deterministic factors and hence
amenable to deductive—nomological explanation and prediction?



One effective way of approaching these questions is through the use of mathemat-
ical modelling techniques. Formally specified models have a number of well-known
benefits: they invite the researcher to spell out all background assumptions and hy-
potheses explicitly, they lead to at least qualitative and often quantitative predictions,
and they can often be applied, as a sort of in silico laboratory, in situations in which
other kinds of approaches are ineffective or outright impossible. More and more
models of this kind are becoming available in the vast and growing body of literature
on language variation and change, and numerous intriguing conceptual connections
with neighbouring fields, in which dynamical processes play equally central roles,
await to be fully explored. It is the purpose of this chapter to give the reader a taste of
this breadth of modelling approaches, while at the same time offering a programmatic
account of a cultural-evolutionary approach to variation and change.

The phrases ‘formal model’, ‘mathematical model’ and ‘computational model’
are all used in the literature, sometimes interchangeably, sometimes not. Here, I use
the term ‘computational model’ in a wide sense, to refer to any formally specified
model, whether it is studied using analytical mathematical methods or computer
simulations. Examples of different types of computational models, specified on
different levels of complexity and studied using different techniques, will be given
throughout the chapter.

Although it is important to highlight the differences between different models,
it is equally important to stress their commonalities. Formal models of language
variation and change are unified by the fact that they attempt to describe and explain
the evolutionary dynamics of linguistic systems. This implies that such models view
language change as a (cultural) evolutionary process in which ‘different ways of saying
the same thing” compete in populations of language users. These processes may vary
widely from one situation to the next: for instance, they may be selectively neutral
in some cases but involve differential fitness in others. They share the following
central aspects, however: (i) linguistic changes occur through the replication of
linguistic variants in language communities, and (ii) those changes, when viewed
on a macroscopic level, are emergent products of numerous interactions that occur
on the lower, fundamental level of language acquisition and linguistic interaction.
These assumptions are important, because they have epistemological consequences.
For instance, on this view, various directionality properties of change processes
(such as have been extensively documented e.g. in the study of grammaticalization;
Hopper and Traugott 1993; also see Unique ID WBCDLO026) cannot be taken as
epistemologically primary; rather, they should properly be viewed as explanantia,
something to be explained. It is the language dynamicist’s task to show how such
macroscopic, population-level and possibly very long-term developments emerge
from an underlying, ontologically primary level of individual cognition and social
interaction.



2 Propagation of change: three problems

It is useful to view the propagation of linguistic innovations in populations of language
users through the lens of three problems which are intimately related.

The first problem concerns the emergence of innovations or “linguistic mutations”
in the first place. Classically, this has been discussed in the context of the actuation
problem as formulated by Weinreich, Labov, and Herzog (1968): why do changes
occur in some languages at some times, but not in others or at other times? Despite
nearly five decades of work, it has been asserted that the “actuation riddle” remains
essentially unsolved (Walkden 2017, 420). According to some, linguistic change
cannot so much be explained as observed (Lass 1980, 1997)—a rather pessimistic
conclusion for historical linguistics as a whole. Other researchers have pointed
to possible solutions to the actuation problem, usually stressing the importance
of bifurcations—Ilarge qualitative changes to the behaviour of a complex system
in response to minute variation in some of its control parameters—in explaining
how “sudden” shifts sometimes (but not always) occur (Niyogi 2006; Kirby and
Sonderegger 2013; Séskuthy 2015; also see Unique ID WBCDLOO1 and Unique ID
WBCDLO063).

Contrasting linguistic with biological evolution, Nettle (1999) identified a related
challenge, which he dubbed the threshold problem. In biological evolution, the
transmission of genetic information involves one or two parents only; consequently
mutations, once they have occured, are likely to be inherited. In the transmission
of linguistic information, by contrast, each language learner has a larger number of
“cultural parents”, some of whom, in fact, come from the learner’s own peer group.
Innovative forms are by definition in the minority initially, and they thus have a harder
time finding their way into the learner’s eventual linguistic repertoire. This has two
consequences for modelling work. Firstly, any formal account of the propagation of a
linguistic innovation must explain how the innovation manages to cross the threshold
of propagation. Less obviously, but equally importantly, we should be skeptical of
models which predict no such threshold to exist; on which more below.

In order to propagate, a linguistic mutation must overcome the actuation and
threshold problems. These are necessary, but not sufficient, conditions: in general,
we must also ask what keeps a change going, once it is underway. Most scholars
would agree that, in some intuitive sense, a change is not really a change unless it goes
to completion or near-completion: failed changes are changes in name only. This
could be termed the sustain problem: why are changes sustained (carried through)
in some languages at some times, but not in others or at other times? What makes
innovative linguistic variants successful?

The actuation, threshold and sustain problems form the hard core of the explanation
of linguistic change: answering the questions posed by them answers why a linguistic
mutation appeared, why it rose above the threshold of propagation, and why its
propagation was successful in the end. In the rest of this chapter, I will explore
how models of change formulated in mathematical terms and studied through
computational means can help us make sense of the three problems.
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Figure 1. The configuration spaces for two (left) and three (right) binary variables. Each
point is a possible language. Pairs of languages are connected by lines showing possible
language changes (for clarity, changes involving flipping the value of more than one variable
simultaneously are not shown in the k = 3 case).

3 The configuration and variation spaces of language: what counts as change?

To talk coherently about language change, we need precise definitions of both what
changes and what is the space of possible change processes in language. Language
change is an example of cultural evolution: a language changes when the distribution
of linguistic variants across a speech community changes through the differential
replication of some variants at the expense of others. To make this precise, we
may imagine a hypercube whose various sides represent all the possible linguistic
variables that human cognition makes available. Each point in this hypercube defines
a possible language; each actually attested language is likewise a point, or perhaps a
cloud of points, in this space, and either stable or moving about in the space.

To illustrate, consider a toy world in which human cognition allows k linguistic
variables, all of them binary. The number of possible languages is then 2*, and
we can arrange them into a k-dimensional structure in which each of the possible
languages is represented as a string a; . . . ax where a; € {0, 1} supplies the value of
the ith variable. Figure 1 illustrates this for k = 2 and k£ = 3. In particular, change
in one or more variables now becomes equated with traversing a link between two
points in this space. For instance, in the k = 3 case, changing the value of any one
variable (from O to 1 or vice versa) moves us along one of the edges of the cube;
changing the value of two variables at a time moves us along one of the faces of
the cube; and changing the values of all three variables at once takes us through the
interior of the cube.

This defines the set of possible languages and the set of possible transitions



between different types of language; I will call it the configuration space of human
language in what follows (cf. the notion of sequence space in biological contexts;
Nowak 2006). Note that not every point of the space need ever be occupied in reality,
nor need all logically possible transitions be empirically attested (cf. Unique ID
WBCDLO006, Unique ID WBCDLO026). In fact, linguistic theory may very well place
strong constraints on the set of possible languages as well as the set of possible
transitions for instance in terms of variable hierarchies (parameter hierarchies in
generative terms) or directionality constraints.

The configuration space affords us a geometric view of language, but it isn’t
enough to describe variation and change. In a change event, a language “hops” from
one point in the configuration space to another; the configuration space has nothing
more to say about how this happens. But the question of the propagation of change,
properly construed, is precisely the question of zow a language moves from one point
in the configuration space to another.

Since languages are spoken (or signed) by individuals, and since in a language
community different numbers of individuals may speak different varieties or may
speak them with different probabilities, we need some notion of the “amount” of
a variant that obtains in a population of speakers. That amount will be called the
abundance of the variant; mathematically, it is a real number that must satisfy two
constraints.

Definition (abundance). Let C be a configuration space which makes
available n (e.g. n = 2Ky variants Vi, . . ., V,,. Then an abundance vector
for C is any vector X = (x, . ..,x,) of real numbers which satisfies the
following two conditions:

1. x; > Oforalli,
2. x1++x,=1.

The number x; is called the abundance of variant V;.

Familiar notions of the “amount” of a variant such as the proportion of speakers
speaking the variant, the probability of a speaker employing a variant, or the relative
frequency of that variant in a corpus of text, satisfy this definition; however, the
definition is general enough to allow other possibilities as well. It should also be
noted that abundance is a local quantity: the abundance of a variant in one population
of speakers may differ from that in another population.

Every configuration space has a related space which I will call its associated
variation space; this variation space consists of all possible abundance vectors
for the configuration space. If the configuration space allows n possible variants,
then the dimension of its associated variation space is also n. However, since the
abundances necessarily sum to unity, that is to say, since x; + --- + x, = 1, the
variation space effectively has one fewer degree of freedom and can be represented
as an (n — 1)-dimensional projection. (Mathematically, for a configuration space
of n variants, the corresponding variation space is the (n — 1)-simplex.) Figure 2
illustrates.
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Figure 2. From configuration to variation space. The leftmost column shows configuration
spaces for n = 2, 3, 4 languages. For each configuration space, the corresponding variation
space is a subset of the n-dimensional Euclidean space subject to the requirements given
in the definition of abundance (middle column). For n = 2, this is a straight line; for n = 3,
it is a plane; for n = 4, the variation space is a three-dimensional object whose embedding
four-dimensional space cannot be easily visualized. Since an n-dimensional variation space
only has n — 1 degrees of freedom, the variation space is in fact an (rn — 1)-dimensional
manifold, a so-called simplex (rightmost column).
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Figure 3. For each variant V;, the delta-dominance set D;(8) (for some chosen dominance
level 6 > 0) forms a local neighbourhood of the pure state in which V; dominates fully,
illustrated here as the grey regions. Propagation is said to occur when the abundance
vector—a point in the variation space—travels from one delta-dominance set to another,
illustrated here as the curved trajectory from D (5) to D4(9).

Each point in the variation space (each abundance vector) represents one possible
state of the speech community. States x which satisfy x; = 1 for some i will be called
pure states. All other states are states of variation. Since idiolectal variation combined
with a highly dominant variant is often the norm in real language communities, it is
useful to have a concept that refers to states which are situated close to one of the
pure states yet allow a small amount of variation. I shall call a state delta-dominant
at the level ¢ with respect to the ith variant if x; > 1 — 6, where 6 > 0 is a small
number, e.g. 6 = 0.01 (cf. Kauhanen 2017). The set of delta-dominant states of the
ith variant will be symbolized D;(8) (topologically, this is the open d-ball around
the vertex x which satisfies x; = 1, intersected with the variation space).

Let x(¢) denote the state of the speech community at time . We can now state
precisely what we mean by the propagation of an innovative variant i (see also Figure

3).

Definition (propagation). Let x € V where V is a variation space. Then
variant i propagates in V if and only if a variant j # i exists such that
x(t) € D;j(0) butx(') € D;(6) for some times ¢, with t' > ¢, for some
suitable dominance level 6 > 0.

What constitutes a suitable dominance level must depend on the specifics of the
application at hand; we will see examples later.

The total configuration and variation spaces of human language are high-
dimensional, in fact, astronomical. Roberts and Holmberg (2010, 30) suggest
it is “very likely that the number of parameters [i.e. linguistic variables] is in the

7



X4 X4

X2

X1 X3 X2
X3

Figure 4. The Dissection Principle illustrated. Choosing any subset of pure states from a
variation space (here, the pure states corresponding to the second, third and fourth variant),
the subspace spanned by those states forms another variation space of lower dimensionality.

hundreds, and at least possible that it is in the thousands”. Assuming every parameter
to be binary for simplicity, this implies between 2! and 21999 distinct possible
human languages, if all parameter value combinations are thought to be possible.
Even if some logically possible languages are not grammatically possible, the number
is still astronomical: note that even the modest lower-bound estimate of 2!%° equals
roughly 10%°, i.e. 1 followed by 30 zeroes. This implies that the total configuration
and variation spaces are of no practical use in modelling language variation and
change. More generally, if the evolution of any given linguistic variable may depend
on the evolution of any other linguistic variable, so that the dimensionality of the
problem may not be reduced, then any scientific study of language variation and
change is rendered impossible. It is thus a practical necessity to “carve out” areas
of the variation space for study which would appear to be governed chiefly by their
own dynamics, without interference from other areas. For instance, we may suppose
syntax to be largely—though perhaps not entirely—independent of phonetics, and
hence study the two in separation outside of particular case studies in which such
a connection or “interference” is plausible (such as when a process of phonetic
reduction causes morphological erosion, ultimately leading to a restructuring of
syntax). This motivates the following

Dissection Principle. In focusing on the dynamics of a specific linguistic
phenomenon, we may “dissect” the relevant part of the variation space,
leaving the rest outside the analysis. If X € V, then a new (dissected)
variation space X is formed by the normalization x/2}ycx y for all x € X.

Geometrically, each subsimplex of the original variation space is also a simplex
and thus a variation space; see Figure 4.



4 The shape of propagation: a phenomenological equation

One way of responding to the sustain problem is to maintain that, much like
different genomes are differently adapted to any given biological environment,
different linguistic variants may also have functional differences in a given linguistic
environment. The successful propagation of a variant is then explained by its greater
functional advantage, when compared to its competitors. This way, predictions
become available: if the advantage of one variant is greater than that of another, then,
all else being equal, we should expect the abundance of the former to increase and
the abundance of the latter to decrease over time.

Suppose we have reason to believe that, in some historically relevant situation,
the dynamics of two variants are sufficiently isolated from correlations with further
variants, so that the Dissection Principle may be invoked to limit consideration to the
study of the dynamics of a single binary variable. Let x = x| refer to the abundance
of the first variant; the abundance of the second variant is then 1 — x (= x2). Suppose
that each variant carries with it a firness, which for the time being is simply a real
number. Let f; stand for the fitness of the first and f; to the fitness of the second
variant. Moreover, let

() ex)=xifi+xafh=xfi+(1-x)f

denote the average fitness that obtains in the speech community, i.e. the sum of the
two fitness quantities weighted by the abundances of the respective variants.

To reproduce the intuition that the fitter variant ought to win out in diachrony, it
makes sense to require that the abundance x increase if and only if f; > ¢(x), that
is, whenever the fitness of the first variant is greater than average. This yields the
following simple ansatz for a difference equation that governs the evolution of x over
discrete time, t:

2) x(t+1)= Lx(r)

@(x(1))

It is plain to see that the value of x increases if f; > ¢(x) and decreases if f; < ¢(x).
Moreover, simple algebra shows that, for all x € (0, 1), f1 > ¢(x) holds if and only
if fi > f> (and f] < ¢(x) if and only if f; < f>). Thus, in this case, the dynamics of
x are completely determined by the relative magnitudes of the fitnesses fi and f, of
the competing variants.

This is enough to predict whether the abundance x increases or decreases, but
the simple equation actually tells us more, for it also gives the propagation process a
particular shape. It is not difficult to solve the difference equation (2), whereupon
one finds that

1
AW _
“(ﬁ) (5 1)

for a given initial condition x(0). Plotting this equation with time ¢ on the horizontal
axis and the abundance x(7) on the vertical axis reveals that the curve has a sigmoidal

3) x(n)=

9
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Figure 5. The solution (3) of the phenomenological equation (2) is a sigmoidal sequence of
abundance values.

shape (Figure 5)—the shape of an S-curve so often mentioned in the literature (see
Denison 2003)

Equation (2) provides a simple phenomenological model of the propagation of
an innovative variant at the expense of a single competitor—phenomenological, as
it reproduces some salient aspects of the phenomenon under study (especially, the
sigmoidal nature of propagation) but is not derived from first principles (on this
terminology, see Frigg and Hartmann 2020). The fitness quantities, so central to
determining the outcome of propagation, remain nebulous: what are they exactly,
and how could their values be empirically estimated? The next section provides one
way of answering these questions by showing how the phenomenological equation
can be derived from a model of language acquisition combined with a simple form
of inter-generational transmission.

Even without a mechanistic foundation, the phenomenological model allows us
to illustrate a few key dynamical notions. Notice that there are exactly three ways for
equation (2) to satisfy the equilibrium condition x(¢ + 1) = x(#) in which no change
occurs. These are f; = ¢(x(t)), x() = 0 and x(¢) = 1. Again, it is easy to check that
f1 = ¢(x(¢)) if and only if f; = f»; in other words, a stationary state is predicted if
no fitness difference obtains, no matter what the current abundance in the population.
On the other hand, if f; # f>, then only two equilibrium points exist: x = 0 and
x = 1. This also makes intuitive sense: in a pure state, no variation exists and hence
speakers will have no evidence of the existence of a competing variant which might
be adopted instead of the conventional one.

When fitnesses are unequal, the two equilibrium states have different stabilities
depending on whether f; < f> or fi > f>. Suppose the former is the case. Then
V1 is less fit than V>, and we would like our model to have the following property:
starting from any point in the delta-dominance set D(¢) other than the pure state
x = 1 in which Vj has full abundance, we should expect to see the population state
evolve towards the equilibrium x = 0 (full use of V) over time. Since x(7+ 1) < x(¢)

10
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Figure 6. Phase diagram of the phenomenological equation. The stable equilibrium is shown
as a filled circle, the unstable one as an open circle. The stabilities reverse as the value of the
fitness difference f; — f> crosses zero.

when f] < f>, this is indeed what the phenomenological equation predicts; moreover,
this behaviour occurs for any value of ¢, i.e. for any amount of perturbation to the
equilibrium state. The pure state x = 0 is a globally stable equilibrium in this case,
while the state x = 1 is unstable. If f; > f,, then we have what is essentially the
mirror image of this situation, with x = 1 globally stable and x = 0 unstable (Figure

6).

5 Inter-generational evolution: deriving the phenomenological equation

The variational learning model (Yang 2002) provides an elegant account of language
acquisition (see Unique ID WBCDL029). Utilizing a simple method to update
the weights assigned to different grammatical options in response to environmental
feedback (Bush and Mosteller 1955), the language learner tends towards a limiting
distribution of those weights. In the two-variant case, the expected values of the
weights (p1, p2) in the limit of an infinite learning period are

4  E[pi]= o

and E =
c1+Co [pZ] c1+co

where c¢; denotes the penalty probability of variant 7, the probability of the learner’s
environment punishing the use of this variant.

Now suppose that speakers are arranged in a sequence of non-overlapping
generations in line with Andersen’s (1973) classical Z-model: the input to the
language learning process of generation ¢ + 1 speakers comes from generation ¢
speakers, who in turn received input from generation # — 1. With two competing
variants, speakers may utter three kinds of strings: those which are only compatible
with the first variant, those which are only compatible with the second variant, and
those which are compatible with both. The latter make no difference to the dynamics,
as they will not prompt the learner to update his or her grammar weights. The first
two, however, play a central role. Let @ denote the probability of a speaker of the
first variant uttering a sentence not compatible with the second variant, and let 8
denote the probability of a speaker of the second variant uttering a sentence not
compatible with the first variant (Figure 7). Then, if the abundance of the first variant
in generation 7 is x(¢) (so that the abundance of the second variant is 1 — x(7)), a
generation ¢ + 1 learner employing the first variant receives a penalty with a total

11



Figure 7. The probabilities of two competing variants generating output that is incompatible
with the other variant constitute one possible source of differential fitness in language change.
Here, the variant on the left generates some number of surface forms which the variant on the
right does not (the grey set on the left). Similarly, the variant on the right has some number
of such unique surface forms (the grey set on the right). The measures of these sets (the
probabilities of drawing a surface form from each subset), @ and 8, determine the direction
of inter-generational change, and thus play the role of (constant) fitness parameters.

probability of
S)  cr=p(1-x().

This is because that total probability decomposes into two independent contributions:
first, the probability of encountering a speaker who may utter a string that clashes
with the first variant in the first place (1 — x(¢)), and secondly, the probability of
this interlocutor in fact uttering such a string (8). Similarly a learner employing the
second variant receives a penalty with a total probability of

(6) 2 =ax(t).

These observations allow us to write an inter-generational difference equation by
substituting the above penalties in equation (4), whereby

ax(1)
B(1 —x(1)) + ax(r)

or in other words,

(7 x(t+1)=

®) x(r+1) = (1)

a
—X
@(x(1))
where ¢(x) = ax + B(1 —x).

This equation has the form (2); the probabilities @ and g turn out to play the role
of the fitness quantities f; and f>. It is no longer mysterious where the fitnesses
arise from: they simply reflect the probabilities with which incompatible strings
are uttered by speakers of the corresponding variants (in a syntactic application, for

12



instance, they may reflect the weak generative capacities of the competing grammars;
see Unique ID WBCDLO029 for extended discussion).

Deriving the phenomenological equation from a model of language learning thus
gives us a mechanistic model (Craver 2006; Lindsey 2001; Baker et al. 2018) of
propagation. The fact that the fitness quantities now receive an interpretation makes
available a number of further tests and predictions. For instance, it is possible to
estimate probabilities such as @ and 8 from corpora, as a number of studies have
done (e.g. Danckaert 2017; Heycock and Wallenberg 2013; Simonenko, Crabbé,
and Prévost 2019; Yang 2000). This places an important independent check on the
model—it is not sufficient that the model reproduce the trajectory of an observed
historical change, it must also do so for values of the fitness parameters which are
consistent with otherwise obtained estimates.

A further illustration of how a mathematically formulated mechanistic model
generates predictions is the following: taking the solution (3), setting x(0) = § and
x(t) = 1 — ¢ and solving for 7, one generates an estimate of the time required for
the language community to traverse from a state of delta-dominance by one variant
to a state of delta-dominance by another (for some suitably chosen small 6 > 0).
Specifically, that time is

_ log(1/6-1)
T log(f1/f2)

(assuming f; > f>), and, with the inter-generational interpretation, this time is
expressed in units of generations. Thus, it is possible to arrive at estimates of the
passage times of propagation processes and to compare them against empirical data
obtained from corpora, thereby yielding a further check on the mathematical model
(see Ingason, Legate, and Yang 2013).

Two further remarks are in order. First, it needs to be stressed that variational
learning in an inter-generational sequence of learner populations is not the only model
that derives the phenomenological equation (2). A simple model involving categorical
learners, in which speakers switch between grammatical variants categorically instead
of entertaining probabilistic grammar weights, predicts the same population-level
equation (Niyogi 2006), and similar equations are derived as the “mean dynamic”
(the expected motion) of a number of stochastic processes that model competition in
general populations (McKane and Newman 2004; Sandholm 2010). This is acommon
feature of complex systems more generally: multiple lower-level mechanisms may
give rise to the same higher-level phenomenon, meaning that the latter alone can
never provide a “crucial experiment” (Popper 1972) for the former. Secondly, above
I have glossed over a number of idealizations that must be made in order to derive the
deterministic equation (7): these include the assumptions that learners have infinite
time at their disposal and that each learner in a given generation accesses the exact
same learning environment. These assumptions are obviously false; however, making
them brings out the deterministic “core” of the model. It is then possible to ask how
relaxing those assumptions will affect our predictions. These questions will be taken
up again in Sections 7-8, where I discuss stochastic models and models with local
effects.

®)
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6 Beyond the phenomenological equation, I: variable fitness landscapes

Another way in which the above model idealizes is through its use of fitness parameters
f1 and f> which are constant—they are dependent neither on the abundances of
the two competing variants in the speech community nor on any conceivable
external influences on the linguistic system which themselves may change over time.
This is appropriate in some situations. For instance, when variational learning is
applied to a syntactic case study, the constant fitness parameters have the relatively
unproblematic interpretation of referring to the relative weak generative capacities
of the competing grammars. In other situations, however, particularly when a
sociolinguistic phenomenon is being modelled, the assumption of constant fitnesses
is less appropriate, since it matters who happens to be uttering the sentences the
learner receives. In such cases we would like to relax the constant-fitness assumption
and write

10 fi=fi(xa,B,...,0,0,...)

to emphasize that the fitness parameters are functions of the population state x
(the vector of current abundances of all variants in the speech community); of
formal, language-internal parameters a, 3, . . .; as well as of a number of potential
language-external parameters p, o, ... (these could include, for instance, demo-
graphic parameters such as population size, social network connectivity, the relative
proportion of second-language speakers in the community, and so on). This move is
conceptually very important: it highlights the fact that linguistic forms rarely have a
fitness (a functional advantage, a processing benefit, etc.) in isolation from other
factors. To take a simple example, it is well-known that typological (near-)universals
lead to strong correlations between features within a language (Greenberg 1963);
an equivalent way of phrasing this is to say that, for instance, prepositions have
greater fitness than postpositions in the context of a VO language but lower fitness
in the context of an OV language. Similarly, it has been suggested that complex
morphology has a lower fitness when the fraction of those learning the language
as a second language is higher in the community (Trudgill 2011; also see Unique
ID WBCDLO046), illustrating one way in which the fitness of linguistic forms may
depend on extra-linguistic parameters.

Linguistic variants in general thus compete within a fitness landscape which is
rarely flat. As soon as the abundances of the competing variants change, fitness
is likely to change, too, either climbing uphill or rolling down. This leads us to
models of propagation which allow frequency-dependent fitness, and to the realm of
evolutionary game theory (EGT). Originally developed (in the 1970s and 1980s) to
model competition and cooperation in animal communities (see e.g. Maynard Smith
1982), EGT has since become a versatile tool not only in the biological sciences
but also in economics, sociology and indeed in various subfields of linguistics.
Jager (2007) provides an EGT account of the typology of case marking, Deo
(2015) and Yanovich (2017) discuss an EGT model of semantics and pragmatics,
Baumann and Ritt (2017) provide a detailed analysis of lexical stress in terms of EGT,
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Kauhanen (2020) uses nonlinear fitness functions to model one type of sociolinguistic
stratification, and Michaud (2020) shows how the utterance selection model of Baxter
et al. (2006) can be interpreted in EGT terms, to mention a few examples.

To illustrate how a simple but non-constant fitness landscape may affect the
behaviour of dynamical systems, let us return to equation (7). The system governed
by this equation has two equilibria. For any choice of the (constant) advantage
parameters « and 8, x = 0 and x = 1 are fixed points. The stabilities of these equilibria
are, moreover, fully determined by the fitness difference @ — 5. Although the model
has some attractive properties, most notably the sigmoidal form of propagation, the
topology of the variation space does have one seriously unrealistic aspect. Suppose
a > f3, so that the state x = 0 is unstable. Suppose the speech community initially
finds itself in this state, and that an innovation occurs which raises x to a non-zero but
small value x = 8. Since the equilibrium is unstable, the evolutionary consequence
of this perturbation is that the perturbation will grow—the innovation will propagate,
reaching the globally stable equilibrium x = 1 in the limit.

In other words, in this type of model, “[o]nce a grammar is on the rise, it
is unstoppable” (Yang 2000, 239). But now recall Nettle’s (1999) observation:
innovative variants always face a threshold of propagation which they must overcome
in order to be selected. The dynamics of our simple model are wholly at odds with
this fact (assuming it is a fact) of language variation and change. An innovation,
even if infinitesimally small, is guaranteed to propagate successfully as long as the
fitness difference points in the right direction. This suggests that the model is missing
an integral component, conformity (Burridge 2017): speakers should display some
amount of attraction towards a delta-dominant variant even if a potential innovative
competitor does enjoy a formal advantage.

Such a mechanism is not difficult to incorporate into our simple model. Instead
of the constant fitnesses @ and S, we introduce the following slightly more complex
fitness functions which, crucially, are now dependent on the abundance x:

fix) =sx+ (1 —s)a
fo(x) =s(1-x)+(1-9)B

As before, the fitnesses depend on a constant part which may again (though need not)
be interpreted as referring to the competing grammars’ weak generative capacities
(the a and B terms). Additionally, each fitness function includes another term that is
proportional to the variant’s current abundance in the speech community (x for the
first variant, 1 — x for its competitor). The new s parameter is a “slider” which can be
varied (between 0 and 1) to adjust the relative importance of the two contributions to
fitness.

Inclusion of the conformity term helps to safeguard the delta-dominance states
against invasion by innovations, unless those innovations are sufficiently numerous.
Suppose variant V; is the currently delta-dominant one but that V; enjoys a formal
advantage, so that x = 0 but @ > g. If V, is dominant enough (x is close enough to
0), then the first term in the fitness function fj(x) is very small. Depending on the
value of s, this may be enough to guarantee that the delta-dominant state with the

(11) {
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Figure 8. Including a mechanism for conformity in the simple model gives rise to a global
invasion barrier (left bottom). This means that the equilibria x = 0 and x = 1 are locally
stable for any choice of advantage parameters @ and 8, and therefore that an incoming
innovation must cross an abundance threshold (the unstable equilibrium in between) in order
to propagate. The invasion barrier exists if s, a parameter regulating the relative strength
between conformity-driven fitness and non-conformity-driven fitness, has a high enough
value. If it exceeds the critical value s*, the invasion barrier exists, as shown in the bifurcation
diagram (right), in which dashed lines indicate unstable and connected lines stable equilibria.

conservative variant is in fact locally stable, and hence that minority innovations
cannot invade. It is not difficult to show that the s parameter has a critical value s*
such that, for all s > s*, the equilibrium is locally stable. The critical value is

. |y — |
12 =
(12) s 1+ |a; — as

and when the invasion barrier exists, it is located at

13) x* =+ - 150 —ay.

2 2s

The former combination of one globally unstable and one globally stable equilibrium
is now replaced by three local equilibria: two stable (the pure states x =0 and x = 1)
and one unstable in between. The unstable equilibrium represents the threshold
in the sense of Nettle’s (1999) threshold problem: any innovation must cross this
invasion barrier in order to propagate. Another way of phrasing the same thing is to
say that the conformity term induces a basin of attraction around the new, locally
stable equilibrium x = 0; to succeed, an innovation must somehow be able to escape
from this basin (Figure 8).

In the following section, we will see how this may happen through a combination
of deterministic and stochastic factors.
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7 Beyond the phenomenological equation, II: stochastic dynamics

The above results involve deterministic systems: in such systems, the current state
x(¢) completely determines all future states x(¢’) with ¢ > ¢. In an ideal world,
perhaps, we might wish to maintain that an ultimate theory of language variation and
change would have precisely this deterministic character, so that once all required
information about initial conditions is to hand, all future states of the language
community under consideration could be predicted deductive—nomologically. In
practice, few scholars believe this level of theory can ever be attained. The factors
affecting the trajectories of language communities are simply too numerous—the
systems too complex—for deterministic prediction to be a realistic aim.

For these reasons, it makes sense to introduce a stochastic component into our
models which is intended to stand for secondary aspects of the phenomenon under
study. For instance, suppose we are interested in explaining syntactic change, and that
a reasonably good, theory-driven picture of the linguistics involved is available. This
picture will make reference to key terms such as ‘syntactic parameter’, ‘linguistic
representation’, ‘generative capacity’, and the like, and the processes and entities
picked up by these terms may reasonably be thought to be universal: they recur from
one speaker to the next. It makes sense for such terms to fall under deterministic
control in our models, and such is the case, for instance, with the constant fitness
parameters @ and 8 above, related in interpretation to the weak generative capacities
of the competing grammars. As we have seen, these parameters can have a decisive
influence on the dynamics of the speech community. On the other hand, it is
intuitively clear that other factors play a role, too, such as speakers’ interaction
patterns. However, the latter can hardly be modelled as deterministic factors: they
are too numerous and complex (the resulting deterministic model, even assuming
it were humanly possibly to write one down, would be so complicated as to hardly
yield any insight). What is more, these factors cannot be experimentally controlled,
at least not easily. It makes sense, then, to subsume such factors under a stochastic
component of the formal model.

In the variational learning model (Section 5), the learner samples a variant to use
and an input token to parse—both of these are, technically, random experiments. The
learner’s trajectory is thus a stochastic process, and consequently, so is the trajectory
of the speech community. Making suitable idealizing assumptions takes these models
to their deterministic limits, yielding the deterministic equations explored above.
Analysis of these equations can provide important insights, as we have seen; however,
it also leaves important questions open. For example, above we saw that including a
conformity term in the model sets up an invasion barrier for the innovative variant.
In a deterministic model, Nettle’s threshold problem arises with full force: namely, if
the innovation’s abundance is below the invasion barrier, then nothing can increase
that abundance beyond that barrier. On the other hand, if the innovation’s abundance
is above the barrier, then it is not really an innovation—its frequency in the speech
community is already high enough to guarantee successful propagation.

So how is the invasion barrier—the threshold of propagation—crossed? If our
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Figure 9. In a stochastic model, random fluctuations may help an initially small innovation
cross the invasion barrier. Here, 10 realizations of the stochastic process were simulated,
starting from an initial value x(0) below the invasion barrier. In 6 of the 10 realizations, the
innovation fails to pass the invasion barrier and dies out. In the remaining 4 realizations,
it crosses the barrier and from there propagates successfully along an S-shaped trajectory.
Time scaled by population size.

model provides a stochastic process instead of a deterministic trajectory, then it is
possible for the speech community’s state to “jump” unpredictably; in particular,
it becomes possible for the invasion barrier to be crossed (for instance, due to the
unpredictable nature of speaker interactions alluded to above). These jumps are not
entirely unpredictable, nor entirely haphazard, however—our model need not have
the character of a random walk or a purely neutral process (Kimura 1983). It is far
more likely that many real-world processes of language variation and change involve
a deterministic core, around which the stochastic process dances in a limited way. It
is this interplay of deterministic and stochastic factors which gives us a full picture
of the ensuing population dynamics.

To illustrate these concepts, let us return to the conformity-enhanced model
from Section 6. Figure 9 displays a number of trajectories of the full stochastic
process, simulated on the computer with the following assumptions. The advantage
parameters were set at @« = 0.2 and 8 = 0.1; the conformity parameter had the value
s = 0.1; the population consisted of N = 1000 individuals with 960 individuals
speaking V> and 40 speaking V; at the start of the simulation, yielding an initial
abundance of x(0) = 40/1000 = 0.04 for V;. The particular choices @ = 0.2 and
B =0.1yield s* = 0.09, and since s = 0.1 > 0.09 = s*, the invasion barrier exists;
its value is x* = 0.05, just slightly above the initial abundance x(0) = 0.04 (see
equations 12—13).

Since @ > (3, variant V; has a formal advantage over the initially delta-dominant
variant V5 and thus ought to replace it. However, the invasion barrier must be
crossed. Looking at the simulated trajectories, we see that many realizations of the
stochastic process simply fail: the innovation never manages to cross the threshold of
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propagation before dying away. These realizations conform to the predictions of the
deterministic model: an innovation that starts from below the invasion barrier cannot
propagate. A number of realizations, however, do cross the threshold. From there, the
innovative variant is carried to delta-dominance with the help of the formal advantage
difference. Even though the randomness inherent in the stochastic process means
that the trajectory sometimes reverses direction, the trend given by the deterministic
fitness difference ultimately means that most of the threshold-crossing trajectories
carry the innovation to complete dominance.

It is also possible for further processes to be at play that facilitate an innovation’s
crossing the threshold of propagation. One such potential mechanism is momentum
selection: under this hypothesis, speakers entertain an estimate of the direction of
change of variables, and give more than proportional weight to variants which are
estimated to be on the rise. For details, see Stadler et al. (2016).

These simple simulations illustrate the importance of bringing together determin-
istic and stochastic factors in formal models of language variation and change. For
some types of models, it is possible to make substantial analytical progress in charac-
terizing the distribution of the stochastically evolving quantities of interest—chiefly,
how their expected values and variances change as functions of time. Classically,
such an approach allows one to perform analytical calculations of key summary
statistics such as the probability of a change occurring or the expected time until
dominance. For an application of this logic of inquiry to an empirical case study, see
Baxter et al. (2009).

8 Beyond the phenomenological equation, III: space and networks

Propagation of linguistic change does not occur in a vacuum, even though the foregoing
discussion may have given this impression—rather, it occurs simultaneously across
physical space and time. It may also propagate across different layers of society—a
form of non-geographical propagation. Ultimately, over very long timescales, these
processes of propagation conspire to give rise to both areal effects and genealogies
(cf. Unique ID WBCDLO0S5S5, Unique ID WBCDLO056, Unique ID WBCDLO060). To
arrive at a more complete picture of language change, we thus need to look at models
which incorporate such dimensions.

Some of the simplest models which can account for either geographical or
sociological structure could be termed two-compartment models. In these models,
two language communities (or subcommunities of a single community) are modelled,
each having its own variation space and associated abundance vector. In addition to
specifying how the dynamics of variants operate within each compartment, the model
also specifies how variants “flow” from one compartment to the other. Such a model
may be studied as a simple representation of language contact (the compartments are
geographically contiguous areas) or of the diffusion of variants from one social class
or age group to another (the compartments are sociologically defined). For examples
of this sort of approach, see Mitchener (2011) and Kauhanen (2020, 2022).

It is straightforward, conceptually speaking, to generalize from such models
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to more general models defined on networks: each node of a network represents
one compartment, and the links between nodes specify contact relations between
compartments. At one extreme, the compartments may represent entire language
communities; at the other, they may represent individual speakers or perhaps even
parts of speakers (think of models of bilingualism or multilingualism). In general,
the connectivity of the network may be arbitrarily complex: the degree distribution
(the distribution of the number of connections) may be highly skewed, there may be
multiple connections (of different types) between one and the same pair of nodes,
and different connections may have different weights (representing, for instance, the
frequency of interaction of the corresponding pair of nodes). Connections may also
be directed in order to model asymmetries of communication or influence. On such
approaches, see Ke, Gong, and Wang (2008), Fagyal et al. (2010), Kauhanen (2017),
and Josserand et al. (2021).

In a system intended to model geographical diffusion, the nodes of the network are
laid out in a special, typically regular and repeating fashion, for instance as a lattice.
One key insight to arise from work on such models relates to the emergence and
maintenance of extended geographical domains due to local influence. If all nodes
on a geographical substrate (e.g. a lattice) evolved independently, we would observe a
patchwork quilt of language states across that substrate, with little order in the spatial
dimension (Figure 10, left). The emergence of extended spatial domains (connected
components on the lattice; Figure 10, middle and right) requires physically nearby
nodes to be correlated with each other—but how do such correlations arise? What is
the dynamic process that gives rise to the synchronic geospatial ordering of linguistic
variants? How do global properties of systems (such as language communities)
emerge out of /ocal processes between their parts (such as individual speakers)?

Above, it was pointed out that the S-shaped trajectories typical of the propagation
of linguistic innovations may arise from various different underlying dynamic
processes. The same holds true of the emergence of spatial order. Such order may
arise from a simple copying dynamics, in which each node periodically updates its
state by copying the state of one of its nearest lattice neighbours. Such a copying
process can be taken as a very simple model of the local spatial propagation through
successful inter-generational transmission; in more complex models, it is possible to
model the entire acquisition process in each node over extended time. If this copying
process is strong enough relative to other processes occuring independently within
(as opposed to across) nodes, extended spatial domains arise; moreover, the size
of these domains may be used to make inverse inferences about the susceptibility
of different linguistic variables to undergo change (Kauhanen et al. 2021). Central
here is the quantitative study of the isogloss junctions present in the system, defined
simply as pairs of connected nodes on the lattice which differ in their state.

In models based on the above sort of copying (known as voter models in the
literature on interacting particle systems; see Liggett 1985), the probability of a node
accepting a variant from its spatial neighbourhood is proportional to the frequency
of that variant in that neighbourhood. In such a model, the isoglosses are said to be
noise-driven. An empirical alternative is that nodes are more (than proportionally)
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Figure 10. In this illustration, spatial order grows from left to right. Each panel shows a
lattice in which each node is either black or white depending on which of two variants forms
the majority option in that node. In each case, the number of black-majority nodes is 25
out of a total of 100 (10 by 10) nodes. A disordered system (left) has a large number of
isogloss junctions, defined as connected node pairs which differ in their state. In a maximally
ordered system (right), these junctions form a connected curve: an isogloss in the traditional
dialectological sense. The emergence of spatial order out of dynamical processes is a central
topic in the study of language dynamics, as it embodies both static properties of isogloss
junctions (how numerous they are, what shape they take, where they are located) as well as
dynamic ones (how they move, i.e. how innovations diffuse across space).

likely to adopt variants which are already locally popular. This leads to conformity-
driven isoglosses (cf. Section 6). In a system driven by high conformity, isoglosses
“prefer” to evolve to be maximally short, akin to how surface tension in a physical
system such as a soap bubble produces the bubble’s characteristic spherical shape,
which minimizes surface area (Burridge 2018). Models of this kind, originally
proposed in statistical physics as simple models of ferromagnets, are known as Ising
models (Liggett 1985).

Burridge and Blaxter (2020) explored the question whether language dynamics
are voter-like or Ising-like. Deriving voter and Ising dynamics from a single update
rule in individual speakers in which the value of a conformity parameter can be varied
to result in the two classes of model, and comparing the models’ predictions about the
resulting spatial domains against fieldwork data from the Survey of English Dialects
(Orton and Dieth 1962), the authors found statistical support for the conformity-driven
(Ising-like) update rule. Although the geospatial distributions of some features in the
survey were consistent with either mechanism, in a majority of cases the conformity-
driven model gave the better fit to data, suggesting that the cultural evolution of
language does indeed include a conformity mechanism.

9 A note on technique: analytics, approximations, simulation

In most of the models discussed above, at least some progress can be made purely
analytically: a pencil-and-paper analysis yields complete information about the
possible range of behaviours of the model at least in some ideal limit (e.g. with
the assumption of an infinite population or infinite learning time). This is not true
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of all models, of course. The more complex a model becomes, the less likely
an analytical approach is to work. In such cases, computers can help: complex
differential equations may be solved numerically, and discrete-time deterministic and
stochastic models may be simulated step by step by implementing the model in some
programming language.

Pioneering mathematical models of language variation and change, such as
Niyogi and Berwick (1997), hail from a time in which the modest speed of personal
computers still exerted significant challenges to the simulation of scientific models of
any reasonable level of realism. Today’s faster computers, particularly the possibility
of parallel computing making use of multicore processors, grid computers or graphics
processing units, make simulation of complex models in reasonable amounts of time
a possibility.

This sort of modelling remains as much an art as a science, however, in the
sense that it is important to use computational resources in sensible ways—the
challenge being that very few explicit recipes exist to guide the researcher in what
is sensible and what isn’t. What can be said is that it generally makes little sense
to write an overly complex simulation, trying to include in it as many aspects and
processes of the real world as one can think of, only to be able to observe a limited
number of simulation runs afterwards. A model that approaches in its complexity the
phenomenon modelled becomes as opaque as the phenomenon itself; in particular,
as the degrees of freedom of a model multiply, its dimensionality explodes and it
becomes impossible to chart the model’s potential behaviours systematically via
simulation. A much more sensible approach is to begin with a simple, analytically
tractable model, and drop one simplifying assumption at a time. This allows the
researcher to explore what consequences making those simplifying assumptions had
on the model’s behaviours in the first place, to test whether the assumptions were
really warranted. This strategy represents an epistemological sequence of models,
starting from highly abstract, and often deterministic, macroscopic models, and
ending at microscopic models defined at a lower level of analysis. Passage from the
macroscopic to the microscopic domain may be facilitated by mesoscopic models
which retain some characteristics of both extremes (Figure 11).

10 Conclusion: the three problems revisited

In Section 2, it was argued that any linguistic innovation must overcome three
obstacles in order to eventually secure its place as the new convention: it must
emerge in the first place (the actuation problem), it must turn from a minority
innovation to a variant that stands the chance of propagating (the threshold problem),
and it must have enough advantage, within the overall fitness landscape of the
(socio)linguistic situation, to actually carry through to eventual delta-dominance
(the sustain problem). The simple models we have discussed above can now be
seen to shed light on each of these problems. It was argued that actuation itself is
relatively unproblematic: linguistic mutations may either be purely random, like
biological mutations, or they may be motivated by directionality. In either case, these
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Figure 11. Computational models of language change can be roughly ordered on a scale
from simple, macroscopic models to complex, microscopic models. The former allow
analytical progress and have the potential to yield insight into the fundamental aspects of the
phenomenon under study. By contrast, microscopic models, often stochastic in nature, offer
more realism at the cost of analytical tractability. Mesoscopic models fall in between these
extremes, and serve as an important link between the two.

mutations are constantly occurring in the production and parsing of language users.
In general, such a mutation can stand the chance of propagating only if it manages
to cross a threshold of propagation; the precise location of this threshold will vary
from circumstance to circumstance, as it depends on complex interactions between
linguistic and extra-linguistic parameters. In some cases, the threshold may be so
low (and the inherent, formal linguistic advantage of the incoming variant so high)
that most innovations succeed. In other cases, particularly if strong sociolinguistic
motivations enforce high levels of conformity, very few innovations manage to cross
the threshold. Actuation in this extended sense—innovation followed by escape from
the basin of attraction of the conventional variant—must be seen as a stochastic
process; it is the random fluctuations of finite populations which make crossing the
threshold possible in the first place. Finally, the now viable innovation must have
enough advantage for its propagation to be sustained until it becomes the only variant
in use—or at least the majority one.

See also

WBCDLO001
WBCDLO029
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