
Variational learning
Solution | Agent-based modelling, Konstanz, 2024

Henri Kauhanen

30 April 2024

Update 7 May 2024

Fixed bug in the learn! function. See the lecture for details.

First, I repeat the definitions of the custom types VariationalLearner and LearningEnvironment
and the associated functions we defined in the lecture. (Without these definitions, none of
what follows will work!)

using Plots # for drawing plots
using StatsBase # for the sample() function

mutable struct VariationalLearner
p::Float64
gamma::Float64

end

struct LearningEnvironment
P1::Float64
P12::Float64
P2::Float64

end

function sample_string(x::LearningEnvironment)
sample(["S1", "S12", "S2"], Weights([x.P1, x.P12, x.P2]))

end

function pick_grammar(x::VariationalLearner)
sample(["G1", "G2"], Weights([x.p, 1 - x.p]))

end

1

../lectures/learning.qmd

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

if g == "G1" && s != "S2"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s != "S1"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end

learn! (generic function with 1 method)

1. Five learners

create learning environment
london = LearningEnvironment(0.4, 0.5, 0.1)

create 5 learners
gamma = 0.01
learner1 = VariationalLearner(0.5, gamma)
learner2 = VariationalLearner(0.5, gamma)
learner3 = VariationalLearner(0.5, gamma)
learner4 = VariationalLearner(0.5, gamma)
learner5 = VariationalLearner(0.5, gamma)

simulate each learner for 1000 steps
trajectory1 = [learn!(learner1, london) for t in 1:1000]
trajectory2 = [learn!(learner2, london) for t in 1:1000]
trajectory3 = [learn!(learner3, london) for t in 1:1000]
trajectory4 = [learn!(learner4, london) for t in 1:1000]
trajectory5 = [learn!(learner5, london) for t in 1:1000]

plot

2

plot(1:1000, trajectory1)
plot!(1:1000, trajectory2)
plot!(1:1000, trajectory3)
plot!(1:1000, trajectory4)
plot!(1:1000, trajectory5)

2. Different learning rates

create learning environment
london = LearningEnvironment(0.4, 0.5, 0.1)

create 5 learners
gamma = 0.001
learner1 = VariationalLearner(0.5, gamma)
learner2 = VariationalLearner(0.5, gamma)
learner3 = VariationalLearner(0.5, gamma)
learner4 = VariationalLearner(0.5, gamma)
learner5 = VariationalLearner(0.5, gamma)

simulate each learner for 1000 steps

3

trajectory1 = [learn!(learner1, london) for t in 1:1000]
trajectory2 = [learn!(learner2, london) for t in 1:1000]
trajectory3 = [learn!(learner3, london) for t in 1:1000]
trajectory4 = [learn!(learner4, london) for t in 1:1000]
trajectory5 = [learn!(learner5, london) for t in 1:1000]

plot
plot(1:1000, trajectory1)
plot!(1:1000, trajectory2)
plot!(1:1000, trajectory3)
plot!(1:1000, trajectory4)
plot!(1:1000, trajectory5)

create learning environment
london = LearningEnvironment(0.4, 0.5, 0.1)

create 5 learners
gamma = 1.0
learner1 = VariationalLearner(0.5, gamma)
learner2 = VariationalLearner(0.5, gamma)
learner3 = VariationalLearner(0.5, gamma)
learner4 = VariationalLearner(0.5, gamma)

4

learner5 = VariationalLearner(0.5, gamma)

simulate each learner for 1000 steps
trajectory1 = [learn!(learner1, london) for t in 1:1000]
trajectory2 = [learn!(learner2, london) for t in 1:1000]
trajectory3 = [learn!(learner3, london) for t in 1:1000]
trajectory4 = [learn!(learner4, london) for t in 1:1000]
trajectory5 = [learn!(learner5, london) for t in 1:1000]

plot
plot(1:1000, trajectory1)
plot!(1:1000, trajectory2)
plot!(1:1000, trajectory3)
plot!(1:1000, trajectory4)
plot!(1:1000, trajectory5)

3. Varying the environment

Here I’m only doing this with the value of the learning rate 𝛾 = 0.01; the principle will be
exactly the same for any other value.

5

create learning environment
prague = LearningEnvironment(0.1, 0.5, 0.4)

create 5 learners
gamma = 0.01
learner1 = VariationalLearner(0.5, gamma)
learner2 = VariationalLearner(0.5, gamma)
learner3 = VariationalLearner(0.5, gamma)
learner4 = VariationalLearner(0.5, gamma)
learner5 = VariationalLearner(0.5, gamma)

simulate each learner for 1000 steps
trajectory1 = [learn!(learner1, prague) for t in 1:1000]
trajectory2 = [learn!(learner2, prague) for t in 1:1000]
trajectory3 = [learn!(learner3, prague) for t in 1:1000]
trajectory4 = [learn!(learner4, prague) for t in 1:1000]
trajectory5 = [learn!(learner5, prague) for t in 1:1000]

plot
plot(1:1000, trajectory1)
plot!(1:1000, trajectory2)
plot!(1:1000, trajectory3)
plot!(1:1000, trajectory4)
plot!(1:1000, trajectory5)

6

4. What does this mean?

The effect of the learning rate parameter 𝛾 (gamma) is quite straightforward: the smaller the
value of this parameter, the slower learning is. In the extreme case 𝛾 = 1, learning is in a
sense as “fast” as it can possibly be: each learner switches between probability 1 of using 𝐺1
and probability 0 of using 𝐺1 at parsing failure.

The effect of the the probabilities P1, P12 and P2 of the learning environment is a bit less
straightforward. In fact, a formula exists that allows one to predict the expected value of 𝑝
(probability of using 𝐺1) a variational learner ends up with after a long period of learning, and
that formula only depends on the environment’s probability parameters. We might look at
this in detail later. For now, suffice it to say that the parameters have some such effect. More
precisely, in the above simulations we see that

• When P1 = 0.4 and P2 = 0.1 (environment london), the learners end up with 𝑝 ≈ 0.8.
• When P1 = 0.1 and P2 = 0.4 (environment prague), the learners end up with 𝑝 ≈ 0.2.

5. Prettifying the plots

create learning environment
prague = LearningEnvironment(0.1, 0.5, 0.4)

7

create 5 learners
gamma = 0.01
learner1 = VariationalLearner(0.5, gamma)
learner2 = VariationalLearner(0.5, gamma)
learner3 = VariationalLearner(0.5, gamma)
learner4 = VariationalLearner(0.5, gamma)
learner5 = VariationalLearner(0.5, gamma)

simulate each learner for 1000 steps
trajectory1 = [learn!(learner1, prague) for t in 1:1000]
trajectory2 = [learn!(learner2, prague) for t in 1:1000]
trajectory3 = [learn!(learner3, prague) for t in 1:1000]
trajectory4 = [learn!(learner4, prague) for t in 1:1000]
trajectory5 = [learn!(learner5, prague) for t in 1:1000]

plot
plot(1:1000, trajectory1, seriestype=:scatter)
plot!(1:1000, trajectory2, seriestype=:scatter)
plot!(1:1000, trajectory3, seriestype=:scatter)
plot!(1:1000, trajectory4, seriestype=:scatter)
plot!(1:1000, trajectory5, seriestype=:scatter)
xlabel!("learning iteration")
ylabel!("probability of G1")
title!("A variational learning trajectory")

8

9

	1. Five learners
	2. Different learning rates
	3. Varying the environment
	4. What does this mean?
	5. Prettifying the plots

