Modules and packages
Solution | Agent-based modelling, Konstanz, 2024

Henri Kauhanen

7 May 2024

1. using vs. import

Imagine the following scenario: Alice writes some Julia code which defines a function
do_cool_stuff() (which does cool stuff), and Bob also writes some Julia code that also
defines a function named do_cool_stuff (), which also does cool stuff but some slightly
different cool stuff than Alice’s function. In other words, the functions have the same name
but do slightly different things.

Now imagine Carlos has access to both Alice’s and Bob’s code. If Carlos executes the function
do_cool_stuff (), what is going to happen? Will Alice’s code run, or will Bob’s code run?

The standard solution to this kind of problem is to put code in modules. A module defines
a namespace. This makes it possible to use the same function names (as well as names for
custom types etc.) in different modules.

If Alice has created a module called Code0fAlice and Bob’s module is called Code0fBob, then
the following commands can be used to distinguish between the two different but homonymous
functions:

CodeOfAlice.do_cool stuff()
Code0fBob.do_cool_stuff ()

Now we can finally explain the difference between using and import. Both commands can be
used to load a module into memory. The difference is:

e using allows the user to refer to a function such as do_cool_stuff () without specifying
the module the function comes from. This can cause conflicts, if more than one module
is used that defines the same name. In that case, Julia will throw a warning, and it is
up to you (or Carlos, in this case) to make sure that you’re not accidentally calling the
wrong function!

e import does not allow the above behaviour. With import, you must specify the module
name every time you call a function.

In summary, you can do either

using CodeOfAlice
do_cool_stuff ()

or

import CodeOfAlice
CodeDfAlice.do_cool stuff()

2. include()

The command include () is used when you want to import into your session Julia code which
lives in an external file (typically, with the .j1 file extension) but which is not necessarily
organized into a module. We used this before to load the plotting code I had written for the
bird agents.

3. export

The command export defines which functions and objects defined inside a module will be
visible to outside users. For example, in the above example, both Alice and Bob have included
the line export do_cool_stuff in their code, to make the function available to outside users
of the module.

Functions which are not exported can still be used. However, in that case, the module
name must always be specified, regardless of whether the module has been loaded using
using or import. In other words, non-exported stuff can only be accessed like this:
ModuleName.function name().

4. The VariationalLearning module

Here, I am following the logic of the lecture on Speaking and listening, omitting the older
LearningEnvironment type which we will no longer need. I've decided to export every type
and function defined by the module. In this case it makes sense, since the external user may
conceivably want to make use of all of them. (We will later see examples of so-called “helper”
functions which need not be exposed to end-users.)

../lectures/speaking.qmd

module VariationallLearning

we need this package for the sample() function
using StatsBase

we export the following types and functions
export Variationallearner

export speak

export learn!

export interact!

variational learner type
mutable struct VariationalLearner

p::Float64 # prob. of using G1

gamma: :Float64 # learning rate

P1::Float64 # prob. of L1 \ L2

P2::Float64 # prob. of L2 \ L1
end

makes variational learner x utter a string
function speak(x::VariationallLearner)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.pl))

fi g = gl
return sample(["S1", "S12"], Weights([x.P1, 1 - x.P1]))
else
return sample(["S2", "S12"], Weights([x.P2, 1 - x.P2]))
end
end

makes variational learner x learn from input string s
function learn!(x::VariationalLearner, s::String)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.p]l))

if g == "G1" && s == "S1"
X.p = x.p + x.gamma * (1 - x.p)
elseif == "G1" && s == "S2"
X.p = X.p - X.gamma * X.p
elseif g == "G2" && s == "S2"
X.p = X.p - X.gamma * X.p
elseif g == "G2" && s == "S1"

X.p = X.p + x.gamma * (1 - x.p)

end

return x.p
end

makes two variational learners interact, with one speaking
and the other one learning
function interact! (x::VariationalLearner, y::VariationalLearner)

s = speak(x)
learn! (y, s)
end

end # this closes the module

It now makes sense to save this code in a file. I've saved it in VariationalLearning. j1. This
way, we can easily reuse our code in the future and not have to rewrite it again and again.

Bonus

Okay, so now we know what a module is. What about the other thing mentioned in the title,
packages? What is a package?

Essentially, a package is just a module which is being maintained using a version control
system and is offered to the rest of the world, usually (but not always) through the official
Julia registry. (These are the things you install with Pkg.add ("PackageName").)

../jl/VariationalLearning.jl
https://juliapackages.com/

	1. using vs. import
	2. include()
	3. export
	4. The VariationalLearning module
	Bonus

