
Ensembles and statistics
Solution | Agent-based modelling, Konstanz, 2024

Henri Kauhanen

2 July 2024

Quantifying the duration of change

How could you quantify the duration of a change using a single number? In other
words, what sort of summary statistic can you use to decide whether one trajectory
goes up earlier than another one? Try to go for the simplest such summary statistic.

Here’s a simple summary statistic that will do the job. Let 𝑝 refer to the mean 𝑝 across the
population of our variational learners; i.e. 𝑝 is the average probability that 𝐺1 is used. We
will then find out the time point at which a simulation first satisfies 𝑝 > 0.5, i.e. the earliest
time at which 𝐺1 has more than 50% usage. Let 𝑇 refer to this time point.

The statistical test

Once you have such a number for each trajectory, you have a set of these numbers.
What kind of statistical test could you use to decide whether the set of numbers
for 𝛽 = 0.1 is significantly different from the set of numbers for 𝛽 = 0.5? (Hint:
you want a test that compares two means from two samples.)

We get a single value of 𝑇 for each simulation trajectory; for example, if we repeat the simula-
tion 100 times for each value of 𝛽, we have two sets of 100 𝑇 numbers. To test whether there
is a statistically significant difference between these sets of numbers, we can use a two-sample
t-test.

Implementation

Once you have answers to the above questions, you can try and implement the
following procedure:

1

a. Instead of 10 simulations, use ensemblerun! to produce simulated trajectories
for 100 repetitions for each 𝛽.

b. Then figure out how to extract your summary statistic from these data.
c. Finally, carry out the statistical test in order to make a decision.

a. Running the simulations

We first load all the necessary ingredients:

using Random
using Agents
using Graphs
using Statistics
using DataFrames
using HypothesisTests

include("VL2.jl")
using .VL

Here is our function that creates one model:

function make_model(beta)
G = watts_strogatz(50, 8, beta)
space = GraphSpace(G)

model = StandardABM(NetworkVL, space,
agent_step! = VL_step!)

for i in 1:50
add_agent_single!(model, 0.01, 0.01, 0.2, 0.1)

end

return model
end

We can set the PRNG seed for reproducibility:

Random.seed!(1539)

Create vectors of models using array comprehensions:

2

models1 = [make_model(0.1) for i in 1:100]
models2 = [make_model(0.5) for i in 1:100]

Use ensemblerun! to simulate and obtain the mean of p:

data1, _ = ensemblerun!(models1, 10_000; adata = [(:p, mean)])
data2, _ = ensemblerun!(models2, 10_000; adata = [(:p, mean)])

Verify that the dataframes look the way we’d expect them to:

data1

3

time mean_p ensemble
Int64 Float64 Int64

1 0 0.01 1
2 1 0.0103 1
3 2 0.010197 1
4 3 0.010095 1
5 4 0.00999408 1
6 5 0.00989414 1
7 6 0.0097952 1
8 7 0.00989725 1
9 8 0.00999827 1

10 9 0.00989829 1
11 10 0.00979931 1
12 11 0.00990131 1
13 12 0.0100023 1
14 13 0.00990228 1
15 14 0.00980326 1
16 15 0.00990522 1
17 16 0.00980617 1
18 17 0.00990811 1
19 18 0.010009 1
20 19 0.0101089 1
21 20 0.0100078 1
22 21 0.0101078 1
23 22 0.0102067 1
24 23 0.0105046 1
25 24 0.0103996 1
26 25 0.0104956 1
27 26 0.0103906 1
28 27 0.0104867 1
29 28 0.0103819 1
30 29 0.010278 1
… … … …

b. Obtaining the summary statistics

Now for the tricky part: in order to determine 𝑇 for a simulation run, we need to find the
lowest value of time such that mean_p is at least 0.5, for each value of ensemble separately.

Reading the part about indexing in the DataFrames.jl documentation, we find that the follow-
ing command will take a subset of the original dataframe, a subset which only contains rows
of the original dataframe on which the value of mean_p is greater than 0.5:

4

https://dataframes.juliadata.org/stable/man/working_with_dataframes/#Indexing-syntax

data1[data1.mean_p .> 0.5, :]

time mean_p ensemble
Int64 Float64 Int64

1 4543 0.500058 1
2 4545 0.500459 1
3 4546 0.501054 1
4 4547 0.502444 1
5 4548 0.503219 1
6 4549 0.502587 1
7 4550 0.501361 1
8 4551 0.501548 1
9 4552 0.503332 1

10 4553 0.504099 1
11 4554 0.504658 1
12 4555 0.504611 1
13 4556 0.505565 1
14 4557 0.505309 1
15 4558 0.506456 1
16 4559 0.507992 1
17 4560 0.509312 1
18 4561 0.510019 1
19 4562 0.510519 1
20 4563 0.510613 1
21 4564 0.510707 1
22 4565 0.5102 1
23 4566 0.509498 1
24 4567 0.509603 1
25 4568 0.510307 1
26 4569 0.510804 1
27 4570 0.511296 1
28 4571 0.511183 1
29 4572 0.510271 1
30 4573 0.510369 1
… … … …

This operation returns a new dataframe, which we can now save in a new variable:

df1 = data1[data1.mean_p .> 0.5, :]

All we need to do now, to extract the 𝑇 numbers we need, is to obtain the first row from this
new dataframe for each separate ensemble. How do we do this?

5

The answer is something known as split–apply–combine. This procedure allows us to first
split a dataframe based on the values in one column (in our case, ensemble), then carry out an
operation on each of the resulting dataframes individually, and then finally combine them back
into a single dataframe. The groupby function from DataFrames.jl is used for the splitting;
here, we split on the ensemble column:

df1 = groupby(df1, :ensemble)

Then, we use combine to apply an operation to each individual dataframe in the grouping.
The function we apply is minimum, which returns the smallest element in an array. In this case,
we wish to obtain the smallest time for each individual dataframe:

df1 = combine(df1, :time => minimum)

6

https://dataframes.juliadata.org/stable/man/split_apply_combine/#The-Split-Apply-Combine-Strategy

ensemble time_minimum
Int64 Int64

1 1 4543
2 2 4431
3 3 4648
4 4 4421
5 5 4985
6 6 5691
7 7 5601
8 8 5243
9 9 4732

10 10 4749
11 11 5069
12 12 4342
13 13 4325
14 14 4558
15 15 3906
16 16 4658
17 17 4089
18 18 5145
19 19 4727
20 20 5209
21 21 4541
22 22 4239
23 23 3999
24 24 4741
25 25 4564
26 26 4873
27 27 4930
28 28 4502
29 29 4371
30 30 4853
… … …

The 𝑇 values we’re interested in are now in the time_minimum column; let’s store them in a
new variable for ease of use:

T1 = df1.time_minimum

100-element Vector{Int64}:
4543
4431
4648

7

4421
4985
5691
5601
5243
4732
4749
5069
4342
4325

�
6073
4126
4386
4041
6995
5015
4455
4101
4528
5090
3895
5525

We can now perform all the same steps for the second set of simulations:

df2 = data2[data2.mean_p .> 0.5, :]
df2 = groupby(df2, :ensemble)
df2 = combine(df2, :time => minimum)
T2 = df2.time_minimum

100-element Vector{Int64}:
4075
4992
4488
5096
4602
4885
5299
4444
5876
4178

8

4397
4873
4753

�
4924
4594
4410
5430
4672
4682
4807
4276
4807
4444
5099
4310

c. Carrying out the statistical test

The t-test can be performed using EqualVarianceTTest from HypothesisTests.jl (see docu-
mentation):

EqualVarianceTTest(T1, T2)

Two sample t-test (equal variance)

Population details:

parameter of interest: Mean difference
value under h_0: 0
point estimate: -41.98
95% confidence interval: (-192.0, 108.0)

Test summary:
outcome with 95% confidence: fail to reject h_0
two-sided p-value: 0.5817

Details:
number of observations: [100,100]
t-statistic: -0.5518436540887174
degrees of freedom: 198
empirical standard error: 76.07227099371633

9

https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test
https://juliastats.org/HypothesisTests.jl/stable/parametric/#t-test

The “test summary” bit tells us that the test failed to reject the null hypothesis (which in this
case states that the mean 𝑇 values between the two sets of simulations do not differ). Thus,
we do not have any evidence that there is actually a difference in the speed with
which trajectories reach 𝑝 = 0.5 between the two sets of simulations.

Bonus: pipes

To obtain the vector of 𝑇 values from a simulation history, we did this:

df1 = data1[data1.mean_p .> 0.5, :]
df1 = groupby(df1, :ensemble)
df1 = combine(df1, :time => minimum)
T1 = df1.time_minimum

Notice that what we’re doing here is to take the contents of a variable (df1), carry out some
operation, and put the result back in the same variable. Julia, like many modern programming
languages, support an operation known as the pipe which makes this kind of process simpler.
The idea is that the result of an operation is piped into the following operation, whose result
is then piped into the following operation, and so on. In Julia, the pipe operator is |>, and
the following does exactly the same as the above code snippet:

using Pipe
@pipe data1[data1.mean_p .> 0.5, :] |> groupby(_, :ensemble) |> combine(_, :time => minimum) |> _.time_minimum

100-element Vector{Int64}:
4543
4431
4648
4421
4985
5691
5601
5243
4732
4749
5069
4342
4325

�
6073
4126

10

4386
4041
6995
5015
4455
4101
4528
5090
3895
5525

Notice that the underscore (_) symbol takes the place of the “anonymous” variable. The @pipe
macro does the magic of populating this temporary variable for you, so you don’t need to do
it yourself.

What this means is that, to create the T1 and T2 arrays, all we need are the following two
lines of code:

T1 = @pipe data1 |> _[_.mean_p .> 0.5, :] |> groupby(_, :ensemble) |> combine(_, :time => minimum) |> _.time_minimum
T2 = @pipe data2 |> _[_.mean_p .> 0.5, :] |> groupby(_, :ensemble) |> combine(_, :time => minimum) |> _.time_minimum

Tip

Whether you find using pipes more natural than explicitly creating temporary variables
(such as df1 above) boils down to personal preference and experience. If you’re like me,
you will initially find pipes confusing, but the more programming experience you gather,
the more natural pipes become. Having said this, it’s good to point out that using a pipe
is never necessary; whatever you can do with a pipe you can also do without.

Bonus 2: plotting the distributions of 𝑇

The statistical test suggests that there is no difference between the two sets of 𝑇 numbers.
Can we visualize this somehow? A usual way of doing this is by way of a boxplot. Here’s how
we can do it in Julia.

load the StatsPlots package
using StatsPlots

create dataframes: first column is the beta value, second column is the T values
set1 = DataFrame(beta="0.1", T=T1)
set2 = DataFrame(beta="0.5", T=T2)

11

join these dataframes (literally, put one on top of the other, "vertical catenation")
sets = vcat(set1, set2)

plot
@df sets boxplot(:beta, :T, label="time to p = 0.5")

We see that the distributions of 𝑇 numbers overlap to a large extent; this is a visual represen-
tation of the fact that there is no difference between the two sets.

Tip

Peruse the StatsPlots.jl documentation to learn more about the @df macro and all the
visualization functions you can use with dataframes.

12

https://docs.juliaplots.org/stable/generated/statsplots/

	Quantifying the duration of change
	The statistical test
	Implementation
	a. Running the simulations
	b. Obtaining the summary statistics
	c. Carrying out the statistical test

	Bonus: pipes
	Bonus 2: plotting the distributions of T

