
Language change: parameter exploration
Solution | Agent-based modelling, Konstanz, 2024

Henri Kauhanen

14 May 2024

Setting up

First, we load the module we have already written:

include("VariationalLearning.jl")
using .VariationalLearning

Note

If VSCode complains about the module, remove the line module VariationalLearning
and the last end statement from the source file VariationalLearning.jl. Then load
the contents of the file by simply issuing include("VariationalLearning.jl") (without
the using command).

We also need to load Plots to be able to do the visualizations:

using Plots

And we also need StatsBase for the mean function, which we will use to calculate population
averages:

using StatsBase

In the lecture, we noted that, in order to both carry out an interaction between two agents and
summarize the population’s state over one time step, we had to use a begin ... end block.
Like this:

1

../bric-a-brac.qmd
../lectures/change.qmd

history = [begin
interact!(rand(pop), rand(pop))
average_p(pop)

end for t in 1:1_000_000]

Alternatively, we can wrap the contents of the block in a function, and then call that function.
This leads to neater code for the array comprehensions later, so that’s the strategy I will follow
in this solution. Accordingly, I define:

function average_p(x::Array{VariationalLearner})
return mean([a.p for a in x])

end

function step!(x::Array{VariationalLearner})
interact!(rand(x), rand(x))
return average_p(x)

end

Our goal in this exercise is to see what varying a number of model parameters does. Since the
steps for running the simulation stay the same, it makes sense to define a function that takes
the model parameters as arguments and then runs a whole simulation for a desired number of
steps, returning the population’s history (defined as the sequence of average values of p over
time). So that we don’t get confused over which argument to this function represents which
model parameter, I am going to use keyword arguments here. You can read more about them
in this week’s lecture.

function simulate(; N, p, gamma, P1, P2, maxtime)
initialize a population
pop = [VariationalLearner(p, gamma, P1, P2) for i in 1:N]

step the population until maxtime
history = [step!(pop) for t in 1:maxtime]

return history
return history

end

I am also going to wrap my plotting code in a custom function, for similar reasons:

2

../lectures/structured.qmd

function my_plot(x)
plot(1:100:length(x), x[begin:100:end], label=false)
ylims!(0.0, 1.0)

end

my_plot (generic function with 1 method)

This function is set up so that we plot every 100th time step (otherwise there will be so much
stuff to plot that both plotting and displaying the figures will be very slow). Additionally, the
function sets the y-axis limits to 0 and 1.

Tip

Whenever there is something that needs to be repeated a number of times in your code,
it is very probably a good idea to wrap that something in a function! The benefits are:

1. You only need to write the function definition once
2. Partly because of the above, you are less likely to make mistakes (compare alterna-

tive strategy: you copy-paste a block of code, then later decide that the code needs
to be modified somehow, but forget to modify all instances of the same block of
code)

3. You can use arguments to modulate how the function does its thing

Make a habit of writing functions whenever the opportunity arises.

Unless otherwise noted, I am going to run each simulation for 100,000 steps, and set that with
the following global variable:

maxt = 100_000

100000

Effect of N (population size)

Population of 100 agents:

simu1 = simulate(N = 100, p = 0.1, gamma = 0.01, P1 = 0.4, P2 = 0.1, maxtime = maxt)
my_plot(simu1)

3

Population of 10 agents:

simu2 = simulate(N = 10, p = 0.1, gamma = 0.01, P1 = 0.4, P2 = 0.1, maxtime = maxt)
my_plot(simu2)

4

Observation: in both populations, the average of p increases along an S-shaped curve. However,
in the smaller population, this happens faster.

Effect of p (initial value of p)

All learners start with 𝑝 = 0.5:

simu3 = simulate(N = 50, p = 0.5, gamma = 0.01, P1 = 0.4, P2 = 0.1, maxtime = maxt)
my_plot(simu3)

All learners start with 𝑝 = 0.8:

simu4 = simulate(N = 50, p = 0.8, gamma = 0.01, P1 = 0.4, P2 = 0.1, maxtime = maxt)
my_plot(simu4)

5

Observation: in both cases, the average of p increases over time. This behaviour does not
seem dependent on the initial value of p in the learners.

Effect of P1 and P2 (the amounts of evidence for grammars 𝐺1 and 𝐺2)

The values of P1 and P2 reversed:

simu5 = simulate(N = 50, p = 0.1, gamma = 0.01, P1 = 0.1, P2 = 0.4, maxtime = maxt)
my_plot(simu5)

6

Starting from 𝑝 = 0.9:

simu6 = simulate(N = 50, p = 0.9, gamma = 0.01, P1 = 0.1, P2 = 0.4, maxtime = maxt)
my_plot(simu6)

7

Observation: average p decreases. This makes sense, because now 𝐺2 has more evidence for it
than 𝐺1 (P2 = 0.4 and P1 = 0.1).

Effect of 𝛾 (learning rate)

Everybody with equal 𝛾

Higher value of 𝛾:

simu7 = simulate(N = 50, p = 0.9, gamma = 0.1, P1 = 0.1, P2 = 0.4, maxtime = maxt)
my_plot(simu7)

Lower value:

simu8 = simulate(N = 50, p = 0.9, gamma = 0.001, P1 = 0.1, P2 = 0.4, maxtime = maxt)
my_plot(simu8)

8

Observation: higher 𝛾s lead to faster change.

Random 𝛾

New simulation function:

function simulate(; N, p, P1, P2, maxtime)
initialize a population
pop = [VariationalLearner(p, rand(), P1, P2) for i in 1:N]

step the population until maxtime
history = [step!(pop) for t in 1:maxtime]

return history
return history

end

Try it:

simu9 = simulate(N = 50, p = 0.9, P1 = 0.1, P2 = 0.4, maxtime = maxt)
my_plot(simu9)

9

Change is again faster, with some added noise (possibly?).

10

	Setting up
	Effect of N (population size)
	Effect of p (initial value of p)
	Effect of P1 and P2 (the amounts of evidence for grammars G_1 and G_2)
	Effect of \gamma (learning rate)
	Everybody with equal \gamma
	Random \gamma

