Structured populations
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

14 May 2024

I Update 21 May 2024

Fixed definition of structured population. The correct definition is: a population is
structured if P(Y | X) # P(Y).

Plan

e So far, we have had agents interacting randomly
e We did this by:

— initializing a population, pop, using an array comprehension
— using rand (pop) to sample random agents
— using our own function interact! to make two agents interact

e Today: using Agents.jl to work with structured populations

Positional vs. keyword arguments

o First, though, a technical remark about function arguments
e We'’ve seen function calls like this:

plot(1:100, (1:100) .~ 2, seriestype = :scatter, color = :blue)

e Here,

— 1:100 and (1:100) .~ 2 are positional arguments
— seriestype = :scatter and color = :blue are keyword arguments

¢ You can swap the order of the latter but not of the former



¢ To create keyword arguments in your own function, you separate the list of keyword and
positional arguments with a semicolon (;):

function my_fun(posl, pos2; keywordl, keyword2)
end
o If you don’t want any positional arguments, you have to write the following!
function my_fun(; keywordl, keyword2)
end

o Keyword (but not positional) arguments can have default values:

function my_fun(; firstname = "John", lastname)
println(firstname * " " * lastname)

end

my_fun(firstname = "Jane", lastname = "Doe")

my_fun(lastname = "Doe")

Jane Doe

John Doe

Structured populations

o I define a population to be structured whenever speakers do not interact fully at random

o Formally:

— let P(X) = probability of sampling agent X for an interaction

— let P(Y | X) = (conditional) probability of sampling agent Y, given that X was
already sampled

— then population is structured if P(Y | X) # P(Y)

o Example: P(D. Trump | Henri) = 0 even though P(D. Trump) > 0



Implementation

o It would be possible for us to write code for structured populations from scratch
o However, this would be more of an exercise in programming than in ABMs...

o« We're better off, here, using code written by other people

o Enter the Agents.jl package, an ecosystem/framework for ABMs in Julia

¢ You should already have Agents installed. If not, now’s the time to:

using Pkg

Pkg.add("Agents")

Agents.jl basic steps

QU W N =

. Decide on model space (e.g. social network)

. Define agent type(s) (using special @agent keyword)
. Define rules that evolve the model

. Initialize your model with AgentBasedModel

. Evolve, visualize and collect data

e This may seem intimidating at first, but is really quite simple!
o Let’s walk through an example: variational learners in space

Grid space

o For this, we will reuse (with some modifications) our code for variational learners
e And assume that individual learners/agents occupy the nodes of a grid, also known as
a two-dimensional regular lattice:

!

¢

S S - .

T

?

et

e Point: interactions only occur along links in this grid


https://juliadynamics.github.io/Agents.jl/stable/

Grid space: implementation
e To implement this in Julia with Agents.jl:

dims = (50, 50)
space = GridSpaceSingle(dims)

e (50, 50) is a data structure known as a tuple
e GridSpaceSingle comes from Agents.jl and defines a grid space in which each node can
carry at most one agent (hence, Single)

1 Tuples and arrays

Tuples are similar to arrays. However, there are important differences. The most impor-
tant of them is that arrays are mutable (the values of their elements can be changed after
creation), while tuples are never mutable. Compare:

arr = [10,20]

tup = (10,20)

arr[1] = 30 # arr is now [30,20]
tup[1] = 30 # throws an error

The developers of Agents.jl have decided that the argument of GridSpaceSingle has to
be a tuple (this decision makes sense in this case—as an immutable type, a tuple is more
efficient than an array of similar size).

If you are running into errors trying to initialize a GridSpaceSingle, the prob-
lem is probably that you are trying to pass it the wrong type of argument.
Compare:

GridSpaceSingle([50, 50]) # trying to pass array; error
GridSpaceSingle (50, 50) # trying to pass two separate numbers; error
GridSpaceSingle((50, 50)) # passing a tuple; works

Agent redefinition
e To make use of the machinery provided by Agents.jl, we replace:

mutable struct Variationallearner
p::Float64
gamma: :Float64
P1::Float64



P2::Float64
end

e with this:

Q@agent struct VariationalLearner(GridAgent{2})
p::Float64
gamma: :Float64
P1::Float64
P2::Float64
end

e @agent is a special “macro” (more on these later) that introduces all agents in Agents.jl
e GridAgent{2} instructs Agents.jl that this agent is to be used in a 2-dimensional grid
space

Stepping rule

e« We next need a function that evolves i.e. steps the model
o This is a function that takes a single agent and the model as arguments
e We can make use of the interact! function we have already written:

function VL_step! (agent, model)
interlocutor = random_nearby_agent(agent, model)
interact! (interlocutor, agent)

end

Model initialization
¢ We now have all the ingredients we need to initialize the ABM:

model = StandardABM(VariationalLearner, space;
agent_step! = VL_step!)

StandardABM with O agents of type Variationallearner

agents container: Dict

space: GridSpaceSingle with size (50, 50), metric=chebyshev, periodic=true
scheduler: fastest



In the above function call, you cannot write agent_step!=VL_step! (i.e. without spaces
around the = sign). This is because, if you do so, Julia parses this as agent_step != VL_step!,
which is not what we want.

In other words, when using keyword arguments with exclamation points in their names, make
it a habit to separate the equals sign with spaces.

o This creates a sort of an “empty” container (it has no agents yet). To add agents, we
call:

add_agent_single! (model; p = 0.1, gamma = 0.01,
P1 = 0.4, P2 = 0.1)
VariationallLearner(1, (4, 27), 0.1, 0.01, 0.4, 0.1)

o Note: the values of the agent’s internal fields (p, gamma etc.) are specified as keyword
arguments!

e We have a space of 50 x 50 = 2,500 nodes
o Let’s add 2,499 more agents:

for i in 1:2499
add_agent_single! (model; p = 0.1, gamma = 0.01,
P1 = 0.4, P2 = 0.1)
end

¢ Check number of agents:

nagents (model)
2500

Stepping the model
e Stepping the model is now easy:

step! (model)

StandardABM with 2500 agents of type Variationallearner

agents container: Dict

space: GridSpaceSingle with size (50, 50), metric=chebyshev, periodic=true
scheduler: fastest



e Or, for a desired number of steps:

step! (model, 10)

StandardABM with 2500 agents of type Variationallearner

agents container: Dict

space: GridSpaceSingle with size (50, 50), metric=chebyshev, periodic=true
scheduler: fastest

| Important

Stepping in Agents.jl is controlled by a so-called scheduler. You can decide which sched-
uler to use when initializing your model; for now, we will stick to the default scheduler.

This is important to know: when the default scheduler steps a model, every agent
gets updated. In the case of our model, this means that every agent undergoes exactly
one interaction as the “listening” party, i.e. every agent gets to learn from exactly one
interaction during one time step.

Plotting the population

e With Agents.jl, we also have access to a number of functions that can be used for purposes
of visualization
o abmplot(model) plots model in its current state. It has two return values:

— the first one is the plot itself
— the second one contains metadata which we usually don’t need to care about

e To actually see the plot, you have to call the first return value explicitly:
fig, meta = abmplot(model)

fig

Warning: Found "resolution™ in the theme when creating a “Scene”. The “resolution” keyword
@ Makie ~/.julia/packages/Makie/iRMOc/src/scenes.jl:220



10 20 30 40 50

e So all we get is a purple square... what gives?

e The problem is that we haven’t yet instructed abmplot how we want our model to be
visualized

e We could in principle be interested in plotting various kinds of things

e For our model here, it makes sense to plot the value of p, i.e. each learner’s internal
“grammatical state”

e This is done with a function that maps an agent to its p

e In this case, the function is as simple as:
function getp(a)

return a.p
end

getp (generic function with 1 method)

@ Tip

Julia also allows one-liner function definitions. These are often useful when defining very
simple functions, like getp. The equivalent one-liner definition here is:



getp(a) = a.p

getp (generic function with 1 method)

o We now pass our getp function as the value of the agent_color keyword argument to
abmplot:

fig, meta = abmplot(model; agent_color = getp)
fig

Warning: Found “resolution™ in the theme when creating a “Scene”. The "resolution” keyword
@ Makie ~/.julia/packages/Makie/iRMOc/src/scenes.jl:220

50

40

30

20

10

10 20 30 40 50

o We can see how the population changes as we evolve the model further (the new as
keyword argument specifies the size of the dots that represent the agents):

step! (model, 1000)
fig2, meta = abmplot(model; agent_color = getp, as = 12)
fig2



Warning: Found “resolution™ in the theme when creating a “Scene”. The “resolution” keyword
@ Makie ~/.julia/packages/Makie/iRMOc/src/scenes.j1:220
Warning: Keywords “as, am, ac” has been deprecated in favor of
“agent_size, agent_marker, agent_color”
@ AgentsVisualizations ~/.julia/packages/Agents/8JW8b/ext/AgentsVisualizations/src/abmplot.

50

40

e And further:
step! (model, 1000)

fig3, meta = abmplot(model; agent_color = getp, as = 12)
fig3d

Warning: Found “resolution™ in the theme when creating a “Scene”. The “resolution” keyword
@ Makie ~/.julia/packages/Makie/iRMOc/src/scenes.jl:220

10



o Making an animation/video allows us to visualize the evolution dynamically
e This is achieved with the abmvideo function

abmvideo("vid.mp4", model; agent_color = getp, as = 12,
frames = 100, framerate = 10)

../videos/vid.mp4

A more interesting example

Above, we initialized the population so that everybody had p = 0.1 in the beginning
What about the following: at time ¢ = 0,

— three people have p = 1 (uses G all the time),
— every other person has p = 0 (uses G, all the time)?

Will we see GG} spread across the population?
Let’s try!

We first reinitialize the model:

11


../videos/vid.mp4

space2 = GridSpaceSingle((50, 50))
model2 = StandardABM(VariationalLearner, space2;
agent_step! = VL_step!)

for i in 1:3
add_agent_single! (model2; p = 1.0, gamma = 0.1,
P1 = 0.4, P2 = 0.1)
end

for i in 4:2500
add_agent_single! (model2; p = 0.0, gamma = 0.1,
P1 = 0.4, P2 = 0.1)
end

1 Important

Here it is important that we create a new space (I've called it space?2).
Agents.jl would try to add agents to our old space, which is already full!

Otherwise

e Visualize initial state of population:

fig, meta = abmplot(model2; agent_color = getp, as = 12)
fig

Warning: Found “resolution™ in the theme when creating a “Scene’.

@ Makie ~/.julia/packages/Makie/iRMOc/src/scenes.j1:220

12

The “resolution™ keyword



10 20 30 40 50

o Animate for 1,000 iterations (every agent gets to learn 1,000 times):

abmvideo("interesting.mp4", model2; agent_color = getp,
as = 12, frames = 1000, framerate = 20)

../videos/interesting.mp4

Next time

¢ Social networks, and how to implement them in Agents.jl
o Wrapping up some technical topics: modules, abstract types and inheritance

13


../videos/interesting.mp4

	Plan
	Positional vs. keyword arguments
	Structured populations
	Implementation
	Agents.jl basic steps
	Grid space
	Grid space: implementation
	Agent redefinition
	Stepping rule
	Model initialization
	Stepping the model
	Plotting the population
	A more interesting example
	Next time

