Speaking and listening
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

30 April 2024

I Update 7 May 2024

Fixed the buggy learn! function. Also added the missing link to the homework.

Plan

o Last week, we ran out of time

¢ Better go slowly and build a solid foundation rather than try to cover as much ground
as possible

¢ Hence, today:

— Finish last week’s material
— Introduce a little bit of new material: implementing interactions between variational
learners

Dropping the environment

e So far, we’ve been working with the abstraction of a LearningEnvironment:

‘ \/a,n ot a’V‘-“}'L%rV\M

P::Ftowké‘t

o()QW\W\OL W Flo&t"’b\
| ¢ —

|

—,

A

LQ,(&Y‘V\.\V\C\EV\V.W svwment

?'\ L Floc\“-u'\.

P F loet fu

P L ‘Floa{'eb\
-

e We will now drop this and have two VariationalLearners interacting:

o cXrin

N

) Ly 04

.
—_—
‘ \/M;o-{"a’V\“LL%“V‘-M

P ol ‘F ‘OWVG(‘ ‘ \/M;o,‘i;{\r\ukl—%“hw

WAl Floatbt

?)O\M) L ? ol ‘F‘OMG%

| ¢
3QMW\0\ Ve Fl0hf6b\~
| ¢ —

e The probabilities P1 and P2 now need to be represented inside the learner:

G 0

\/axl o—“'\'a’V\“LL%‘W\M

‘) ol T:{oadféti
,Baw‘w\o\ . Floatbt
Fl:ZTWoa+€%

PL T loetb*

|
/_\

e« Hence we define:

mutable struct VariationallLearner

p::Float64 # prob. of using Gl
gamma: :Float64 # learning rate
P1::Float64 # prob. of L1 \ L2
P2: :Float64 # prob. of L2 \ L1
end
Exercise

Write three functions:

Qﬂ,ar

‘ Vori ok gnetleacnor

vy
]

‘) C Flost 64

43(XMAMAG.Z" T:loni'6b1

P1 o F\oa*‘eq

o speak(x::VariationalLearner): takes a variational learner as argument and returns
a string uttered by the learner

e learn!(x::VariationalLearner, s::String): makes variational learner x learn from
string s

e interact!(x::VariationalLearner, y::VariationalLearner): makes x utter a
string and y learn from that string

@ Answer (speak)
using StatsBase

function speak(x::Variationallearner)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.pl))

if g == G1"
return sample(["S1", "S12"], Weights([x.P1, 1 - x.P1]))
else
return sample(["S2", "S12"], Weights([x.P2, 1 - x.P2]))
end
end

speak (generic function with 1 method)

@ Answer (learn!)

function learn!(x::VariationalLearner, s::String)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.pl))

if g == "G1" && s != "S2"

X.p = x.p + x.gamma * (1 - x.p)
elseif g == "G1" && s == "S2"

X.p = X.p - X.gamma * X.p
elseif g == "G2" && s != "S1"

X.p = X.p - X.gamma * X.p
elseif g == "G2" && s == "S1"

X.p = x.p + x.gamma * (1 - x.p)
end

return x.p
end

learn! (generic function with 1 method)

@ Answer (interact!)

function interact!(x::VariationalLearner, y::VariationalLearner)

s = speak(x)
learn! (y, s)
end

interact! (generic function with 1 method)

Picking random agents

e rand() without arguments returns a random float between 0 and 1

e rand(x) with argument x returns a random element of x

o If we have a population of agents pop, then we can use rand(pop) to pick a random
agent

e This is very useful for evolving an ABM

Aside: for loops

e A for loop is used to repeat a code block a number of times
e Similar to array comprehensions; however, result is not stored in an array

for i in 1:3
println("Current number is " * string(i))
end

Current number is 1
Current number is 2
Current number is 3

A whole population

e Using a for loop and the functions we defined above, it is now very easy to iterate or
evolve a population of agents:

pop = [Variationallearner(0.1, 0.01, 0.4, 0.1) for i in 1:1000]
for t in 1:100
x = rand(pop)
y = rand(pop)
interact!(x, y)
end
Exercise

Write the same thing using an array comprehension instead of a for loop.

@ Answer
pop = [VariationalLearner(0.1, 0.01, 0.4, 0.1) for i in 1:1000]

[interact! (rand(pop), rand(pop)) for t in 1:100]

100-element Vector{Float64}:
0.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099

O O OO O O OO oo oo

.09801

.099
.10900000000000001
.099

.099

.099

.099

.099

O O O O O O O O

0.099
0.099
0.099
0.099

Next time

o Next week, we will learn how to summarize the state of an entire population

e This will allow us to track the population’s behaviour over time and hence model potential
language change

e This week’s homework is all about consolidating the ideas we’ve looked at so far — the
variational learner and basics of Julia

../homework/modules.qmd

	Plan
	Dropping the environment
	Exercise
	Picking random agents
	Aside: for loops
	A whole population
	Exercise
	Next time

