
Social networks
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

11 June 2024

Update 25 June 2024

As some of you cleverly pointed out, there is actually a direct link from Switzerland to
Albert Einstein on Wikipedia, rendering my six degrees of separation exercise somewhat
vacuous… �
To better get the desired effect, try navigating between two pages which are less obviously
related, such as Easter Island and Albert Einstein.
Also: I’ve fixed a typo: “each node’s side” → “each node’s size”.

Plan

• In our models so far, agent interactions have been either

1. Completely random
2. Random, but within a local spatial neighbourhood

• Today, we will take a step towards generalizing our models by assuming that agents are
connected through a social network

• We will require Graphs.jl and GraphPlot.jl:

using Pkg
Pkg.add(["Graphs", "GraphPlot"])

Networks

• A network (also known as a graph) consists of

1. A set of nodes (a.k.a. vertices (singular: vertex)) – for us, these are the agents

1



2. A set of connections (a.k.a. links or edges) between nodes – for us, these define
the interaction pattern

• Connections can be

1. Unidirectional (A is connected to B, but B is not connected to A)
2. Bidirectional (A is connected to B and B is also connected to A)
3. Weighted or not

Drawing networks

• Nodes typically drawn as points / filled circles
• A unidirectional connection is drawn as an arrow
• A bidirectional connection is drawn as a line segment
• If connections are weighted, this can be represented e.g. by line width

Example (Zachary’s karate club)

2

https://en.wikipedia.org/wiki/Zachary%27s_karate_club


Networks in Julia

• In Julia, networks/graphs are handled by the Graphs.jl package
• Simple example: create an undirected graph of three nodes, connecting each node:

using Graphs, GraphPlot

G = Graph(3)

add_edge!(G, 1, 2)
add_edge!(G, 1, 3)
add_edge!(G, 2, 3)

Plotting networks

• Networks can be plotted with the gplot function from GraphPlot.jl:

gplot(G, nodelabel=1:3)

1

23

3

https://juliagraphs.org/Graphs.jl


Important

The gplot function in fact returns something known as a “composition”; this may or may
not be actually drawn as a picture, depending on your working environment. If you’re
in VSCode, a picture will be displayed, but if you’re using the ordinary Julia REPL, you
will not see a picture. In the latter case, you need to save the composition to an image
file as follows:

using Compose

pic = gplot(G, nodelabel=1:3)
draw(PNG("mypicture.png"), pic)

Removing connections

• rem_edge! can be used to remove existing connections:

rem_edge!(G, 1, 2)
gplot(G, nodelabel=1:3)

1

2

3

4



Constructing a network from an adjacency matrix

• Using lots of add_edge! calls quickly becomes tedious…
• Often, a better way of constructing a graph is by way of its adjacency matrix
• This is a matrix (two-dimensional array) of numbers such that:

– if there is a 1 in the cell on the ith row, jth column, then nodes i and j are connected
– if there is a 0 there, the nodes are not connected

• Example:

A = [0 1 1
1 0 1
1 1 0]

G2 = Graph(A)

gplot(G2, nodelabel=1:3)

1

2

3

5



Directed graphs

• What if we need a network in which at least some connections are unidirectional?
• We need a directed graph, implemented by the DiGraph type

A = [0 1 0
1 0 0
1 1 0]

G3 = DiGraph(A)

{3, 4} directed simple Int64 graph

gplot(G3, nodelabel=1:3)

1

2

3

Important

Notice that, since Graph constructs an undirected graph, it expects a symmetric adja-
cency matrix as argument. If you try to pass an asymmetric adjacency matrix (such as

6



the one above) to Graph, you will get an error.
In other words, if your adjacency matrix is asymmetric, you are dealing with a directed
graph, and you must use DiGraph.

Exercise

What kind of network do the following adjacency matrices represent? Think about it first
(draw with your “mind’s eye”), then implement the code and plot the graphs.

A = [0 1 0
0 1 0
0 1 0]

B = [0 0 0
1 1 1
0 0 0]

C = [1 0 0
0 1 0
0 0 1]

Solution

GA = DiGraph(A)
gplot(GA, nodelabel=1:3)

7



1

2

3

GB = DiGraph(B)
gplot(GB, nodelabel=1:3)

8



1

2

3

GC = DiGraph(C)
gplot(GC, nodelabel=1:3)

9



1

2

3

Graph generators

• For large networks, it would be tedious to construct them by hand…
• And in any case, we are rarely interested in the precise construction of a network
• What’s more important are the statistical characteristics of the network

– How many connections does a node have on average?
– Are some nodes much more connected than others?
– And so on.

• Large graphs with known statistical properties can be constructed using generators

Erdős-Rényi graphs

• Take 𝑛 nodes, initially unconnected. Cycle through each pair of nodes, connecting them
with probability 𝑝.

– In other words: At each node pair, you flip a biased coin that lands heads with
prob. 𝑝 and tails with prob. 1 − 𝑝. If you get heads, you connect the nodes; if tails,
you don’t.

10



• This algorithm results in a so-called Erdős-Rényi random graph.
• In Graphs.jl, the erdos_renyi function can be used:

GER = erdos_renyi(100, 0.1)
GER2 = erdos_renyi(100, 0.03)

gplot(GER)

gplot(GER2)

11



Accessing graph properties

• Number of nodes (vertices):

nv(GER)

100

nv(GER2)

100

• Number of connections (edges):

ne(GER)

548

12



ne(GER2)

161

• Number of connections for each node (called the node’s degree):

degree(GER)

100-element Vector{Int64}:
11
12
9

10
18
12
9

10
10
7

11
12
12
�
8
7

10
14
9
6

13
13
9
9
9

12

degree(GER2)

100-element Vector{Int64}:
1

13



1
3
0
2
1
3
7
6
2
5
5
3
�
1
2
3
5
3
4
5
3
7
3
1
5

Degree distribution

• This makes it easy to plot a graph’s degree distribution:

using Plots # for the histogram() function
d = degree(GER)
histogram(d)

14



Exercise

Open Wikipedia on the page for Switzerland. Then, using only links on the page, try to
navigate to the page for Albert Einstein.

How many links do you need to go through to reach the destination?

Answer

Here’s one possible path:
Switzerland

→ German
→ Germany

→ Education in Germany
→ Max Planck Institute for Plasma Physics

→ Physics
→ Albert Einstein

That’s 6 links.
But it’s not the shortest path. You can also go, if you’re in the know:
Switzerland

→ University of Zurich
→ Albert Einstein

15



(2 links.)

“Six degrees of separation”

• Some networks have the “small-world property”: there is a short path from every node
to every other node

• The Watts-Strogatz model or small world graph is one way of modelling this
• To obtain such a graph, one does a random rewiring of a ring lattice

1. Start with a ring lattice (on the left, each node has 𝑘 = 2 neighbours; on the right, each
node has 𝑘 = 4 neighbours):

16



2. Randomly rewire each edge with probability 𝛽 to a randomly chosen destination (here,
𝛽 = 0.4):

17



18



• In Graphs.jl, small-world networks can be created with watts_strogatz(n, k, �)

– n: number of nodes
– k: initial degree of every node
– �: rewiring probability

• For example:

GWS1 = watts_strogatz(100, 8, 0.1)
GWS2 = watts_strogatz(100, 2, 0.1)

gplot(GWS1)

gplot(GWS2)

19



gplot(GWS1, layout=circular_layout)

20



gplot(GWS2, layout=circular_layout)

21



Clustering

• Short path lengths are not the only way in which small-world networks are interesting
• They also exhibit high clustering
• The local clustering coefficient of a node 𝑣 is defined as the proportion of neighbours

of 𝑣 which are neighbours amongst themselves
• A highly clustered network contains cliques, subnetworks in which all nodes are con-

nected to each other

Low clustering for node 1:

22



12

3

4

High clustering for node 1:

23



1

2

3

4

• In Graphs.jl, we can use local_clustering_coefficient
• E.g. to get the average local clustering coefficient:

using Statistics
G = erdos_renyi(100, 0.1)
mean([local_clustering_coefficient(G, v) for v in vertices(G)])

0.09162485991820357

using Statistics
G = watts_strogatz(100, 10, 0.1)
mean([local_clustering_coefficient(G, v) for v in vertices(G)])

0.5072842157842158

Exercise

1. Download and unzip the dolphin social network data from https://networkrepository.co
m/soc-dolphins.php

24

https://networkrepository.com/soc-dolphins.php
https://networkrepository.com/soc-dolphins.php


2. Import these data into Julia, construct a graph, and plot the network
3. Modify the plot so that each node’s size is proportional to its degree
4. Plot a histogram of the degree distribution
5. Plot a histogram of the distribution of local clustering coefficient

You will need MatrixMarket.jl and GraphPlot.jl documentation

Going forward

• Next time, we will learn how to interface Graph.jl with Agents.jl, so that we can run
ABM simulations on networks

• Homework:

1. Read Smaldino (2023), chapter 9
2. Complete the homework assignment

Smaldino, Paul E. 2023. Modeling Social Behavior: Mathematical and Agent-Based Models of
Social Dynamics and Cultural Evolution. Princeton, NJ: Princeton University Press.

25

https://github.com/JuliaSparse/MatrixMarket.jl
https://juliagraphs.org/GraphPlot.jl/
../homework/clustering.qmd

	Plan
	Networks
	Drawing networks
	Example (Zachary's karate club)
	Networks in Julia
	Plotting networks
	Removing connections
	Constructing a network from an adjacency matrix
	Directed graphs
	Exercise
	Graph generators
	Erdős-Rényi graphs
	Accessing graph properties
	Degree distribution
	Exercise
	``Six degrees of separation''
	Clustering
	Exercise
	Going forward

