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Update 7 May 2024

Fixed bug in the learn! function so that learning also occurs on strings in the intersection
𝐿1 ∩ 𝐿2 of the two languages.

Update 30 April 2024

Fixed the set diagrams for 𝐿1 � 𝐿2 and 𝐿2 � 𝐿1.

Plan

• Starting this week, we will put programming to good use
• We’ll start with a simple model of language learning

– Here, learning = process of updating a linguistic representation
– Doesn’t matter whether child or adult

Grammar competition

• Assume two grammars 𝐺1 and 𝐺2 that generate languages 𝐿1 and 𝐿2

– language = set of strings (e.g. sentences)

• In general, 𝐿1 and 𝐿2 will be different but may overlap:
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Grammar competition

• Three sets of interest: 𝐿1 � 𝐿2, 𝐿1 ∩ 𝐿2 and 𝐿2 � 𝐿1
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Concrete example

• SVO (𝐺1) vs. V2 (𝐺2)

5



Grammar competition

• Suppose learner receives randomly chosen strings from 𝐿1 and 𝐿2
• Learner uses either 𝐺1 or 𝐺2 to parse incoming string
• Define 𝑝 = probability of use of 𝐺1
• How should the learner update 𝑝 in response to interactions with his/her

environment?

Variational learning

• Suppose learner receives string/sentence 𝑠
• Then update is:

Learner’s grammar String received Update
𝐺1 𝑠 ∈ 𝐿1 increase 𝑝
𝐺1 𝑠 ∈ 𝐿2 � 𝐿1 decrease 𝑝
𝐺2 𝑠 ∈ 𝐿2 decrease 𝑝
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Learner’s grammar String received Update
𝐺2 𝑠 ∈ 𝐿1 � 𝐿2 increase 𝑝

Exercise

How can we increase/decrease 𝑝 in practice? What is the update formula?

Answer

One possibility (which we will stick to):

• Increase: 𝑝 becomes 𝑝 + 𝛾(1 − 𝑝)
• Decrease: 𝑝 becomes 𝑝 − 𝛾𝑝

The parameter 0 < 𝛾 < 1 is a learning rate

Why this form of update formula?

• Need to make sure that always 0 ≤ 𝑝 ≤ 1 (it is a probability)
• Also notice:

– When 𝑝 is increased, what is added is 𝛾(1 − 𝑝). Since 1 − 𝑝 is the probability of 𝐺2,
this means transferring an amount of the probability mass of 𝐺2 onto 𝐺1.

– When 𝑝 is decreased, what is removed is 𝛾𝑝. Since 𝑝 is the probability of 𝐺1, this
means transferring an amount of the probability mass of 𝐺1 onto 𝐺2.

– Learning rate 𝛾 determines how much probability mass is transferred.

Plan

• To implement a variational learner computationally, we need:

1. A representation of a learner who embodies a single probability, 𝑝, and a learning
rate, 𝛾

2. A way to sample strings from 𝐿1 � 𝐿2 and from 𝐿2 � 𝐿1
3. A function that updates the learner’s 𝑝

• Let’s attempt this now!
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The struct

• The first point is very easy:

mutable struct VariationalLearner
p::Float64
gamma::Float64

end

Sampling strings

• For the second point, note we have three types of strings which occur with three corre-
sponding probabilities

• Let’s refer to the string types as "S1", "S12" and "S2", and to the probabilities as P1,
P12 and P2:

String type Probability Explanation
"S1" P1 𝑠 ∈ 𝐿1 � 𝐿2
"S12" P12 𝑠 ∈ 𝐿1 ∩ 𝐿2
"S2" P2 𝑠 ∈ 𝐿2 � 𝐿1

• In Julia, sampling from a finite number of options (here, three string types) with cor-
responding probabilities is handled by a function called sample() which lives in the
StatsBase package

• First, install and load the package:

using Pkg
Pkg.add("StatsBase")
using StatsBase

Now to sample a string, you can do the following:

# the three probabilities (just some numbers I invented)
P1 = 0.4
P12 = 0.5
P2 = 0.1

# sample one string
sample(["S1", "S12", "S2"], Weights([P1, P12, P2]))

"S12"
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Tidying up

• The above works but is a bit cumbersome – for example, every time you want to sample
a string, you need to refer to the three probabilities

• Let’s carry out a bit of software engineering to make this nicer to use
• First, we encapsulate the probabilities in a struct of their own:

struct LearningEnvironment
P1::Float64
P12::Float64
P2::Float64

end

• We then define the following function:

function sample_string(x::LearningEnvironment)
sample(["S1", "S12", "S2"], Weights([x.P1, x.P12, x.P2]))

end

sample_string (generic function with 1 method)

• Test the function:

paris = LearningEnvironment(0.4, 0.5, 0.1)
sample_string(paris)

"S12"

Implementing learning

• We now need to tackle point 3, the learning function which updates the learner’s state
• This needs to do three things:

1. Sample a string from the learning environment
2. Pick a grammar to try and parse the string with
3. Update 𝑝 in response to whether parsing was successful or not

Exercise

How would you implement point 2, i.e. picking a grammar to try and parse the incoming
string?
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Answer

We can again use the sample() function from StatsBase, and define:

function pick_grammar(x::VariationalLearner)
sample(["G1", "G2"], Weights([x.p, 1 - x.p]))

end

pick_grammar (generic function with 1 method)

Implementing learning

• Now it is easy to implement the first two points of the learning function:

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

end

learn! (generic function with 1 method)

• How to implement the last point, i.e. updating 𝑝?

Aside: conditional statements

• Here, we will be helped by conditionals:

if COND1
# this is executed if COND1 is true

elseif COND2
# this is executed if COND1 is false but COND2 is true

else
# this is executed otherwise

end

• Note: only the if block is necessary; elseif and else are optional, and there may be
more than one elseif block

10



Aside: conditional statements

• Try this for different values of number:

number = 1

if number > 0
println("Your number is positive!")

elseif number < 0
println("Your number is negative!")

else
println("Your number is zero!")

end

Comparison ≠ assignment

Important

To compare equality of two values inside a condition, you must use a double equals sign,
==. This is because the single equals sign, =, is already reserved for assigning values to
variables.

if 0 = 1 # throws an error!
println("The world is topsy-turvy")

end

if 0 == 1 # works as expected
println("The world is topsy-turvy")

end

Exercise

• Use an if ... elseif ... else ... end block to finish off our learn! function
• Tip: logical “and” is &&, logical “or” is ||
• Recall:

Learner’s grammar String received Update
𝐺1 𝑠 ∈ 𝐿1 increase 𝑝
𝐺1 𝑠 ∈ 𝐿2 � 𝐿1 decrease 𝑝
𝐺2 𝑠 ∈ 𝐿2 decrease 𝑝
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Learner’s grammar String received Update
𝐺2 𝑠 ∈ 𝐿1 � 𝐿2 increase 𝑝

Answer

Important! The following function, which we originally used, has a bug! It does not
update the learner’s state with input strings from 𝐿1 ∩ 𝐿2. See below for fixed version.

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

if g == "G1" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end
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Answer

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

if g == "G1" && s != "S2"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s != "S1"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end

learn! (generic function with 1 method)

Testing our code

• Let’s test our code!

bob = VariationalLearner(0.5, 0.01)
paris = LearningEnvironment(0.4, 0.5, 0.1)

learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)

0.51489901495

trajectory = [learn!(bob, paris) for t in 1:1000]

1000-element Vector{Float64}:
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0.5097500248005
0.514652524552495
0.5195059993069701
0.5143109393139004
0.5191678299207614
0.5239761516215538
0.5287363901053382
0.5334490262042848
0.5381145359422419
0.5327333905828194
0.5374060566769913
0.5420319961102213
0.5466116761491191
�
0.8043883364948524
0.7963444531299039
0.7983810085986048
0.7903971985126188
0.7924932265274927
0.7945682942622178
0.7966226113195956
0.7986563852063996
0.7906698213543356
0.7927631231407922
0.7948354919093843
0.7968871369902905

Plotting the learning trajectory

using Plots
plot(1:1000, trajectory)
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Bibliographical remarks

• For more about the notion of grammar competition, see Kroch (1989), Kroch (1994)
• Variational learner originally from Yang (2000), Yang (2002)
• Learning algorithm itself is old: Bush and Mosteller (1955)

Summary

• You’ve learned a few important concepts today:

– Grammar competition and variational learning
– How to sample objects according to a discrete probability distribution
– How to use conditional statements
– How to make a simple plot of a learning trajectory

• You get to practice these in the homework
• Next week, we’ll take the model to a new level and consider what happens when several

variational learners interact
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