
A model of language learning
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

23 April 2024

Update 7 May 2024

Fixed bug in the learn! function so that learning also occurs on strings in the intersection
𝐿1 ∩ 𝐿2 of the two languages.

Update 30 April 2024

Fixed the set diagrams for 𝐿1 � 𝐿2 and 𝐿2 � 𝐿1.

Plan

• Starting this week, we will put programming to good use
• We’ll start with a simple model of language learning

– Here, learning = process of updating a linguistic representation
– Doesn’t matter whether child or adult

Grammar competition

• Assume two grammars 𝐺1 and 𝐺2 that generate languages 𝐿1 and 𝐿2

– language = set of strings (e.g. sentences)

• In general, 𝐿1 and 𝐿2 will be different but may overlap:

1

Grammar competition

• Three sets of interest: 𝐿1 � 𝐿2, 𝐿1 ∩ 𝐿2 and 𝐿2 � 𝐿1

2

3

4

Concrete example

• SVO (𝐺1) vs. V2 (𝐺2)

5

Grammar competition

• Suppose learner receives randomly chosen strings from 𝐿1 and 𝐿2
• Learner uses either 𝐺1 or 𝐺2 to parse incoming string
• Define 𝑝 = probability of use of 𝐺1
• How should the learner update 𝑝 in response to interactions with his/her

environment?

Variational learning

• Suppose learner receives string/sentence 𝑠
• Then update is:

Learner’s grammar String received Update
𝐺1 𝑠 ∈ 𝐿1 increase 𝑝
𝐺1 𝑠 ∈ 𝐿2 � 𝐿1 decrease 𝑝
𝐺2 𝑠 ∈ 𝐿2 decrease 𝑝

6

Learner’s grammar String received Update
𝐺2 𝑠 ∈ 𝐿1 � 𝐿2 increase 𝑝

Exercise

How can we increase/decrease 𝑝 in practice? What is the update formula?

Answer

One possibility (which we will stick to):

• Increase: 𝑝 becomes 𝑝 + 𝛾(1 − 𝑝)
• Decrease: 𝑝 becomes 𝑝 − 𝛾𝑝

The parameter 0 < 𝛾 < 1 is a learning rate

Why this form of update formula?

• Need to make sure that always 0 ≤ 𝑝 ≤ 1 (it is a probability)
• Also notice:

– When 𝑝 is increased, what is added is 𝛾(1 − 𝑝). Since 1 − 𝑝 is the probability of 𝐺2,
this means transferring an amount of the probability mass of 𝐺2 onto 𝐺1.

– When 𝑝 is decreased, what is removed is 𝛾𝑝. Since 𝑝 is the probability of 𝐺1, this
means transferring an amount of the probability mass of 𝐺1 onto 𝐺2.

– Learning rate 𝛾 determines how much probability mass is transferred.

Plan

• To implement a variational learner computationally, we need:

1. A representation of a learner who embodies a single probability, 𝑝, and a learning
rate, 𝛾

2. A way to sample strings from 𝐿1 � 𝐿2 and from 𝐿2 � 𝐿1
3. A function that updates the learner’s 𝑝

• Let’s attempt this now!

7

The struct

• The first point is very easy:

mutable struct VariationalLearner
p::Float64
gamma::Float64

end

Sampling strings

• For the second point, note we have three types of strings which occur with three corre-
sponding probabilities

• Let’s refer to the string types as "S1", "S12" and "S2", and to the probabilities as P1,
P12 and P2:

String type Probability Explanation
"S1" P1 𝑠 ∈ 𝐿1 � 𝐿2
"S12" P12 𝑠 ∈ 𝐿1 ∩ 𝐿2
"S2" P2 𝑠 ∈ 𝐿2 � 𝐿1

• In Julia, sampling from a finite number of options (here, three string types) with cor-
responding probabilities is handled by a function called sample() which lives in the
StatsBase package

• First, install and load the package:

using Pkg
Pkg.add("StatsBase")
using StatsBase

Now to sample a string, you can do the following:

the three probabilities (just some numbers I invented)
P1 = 0.4
P12 = 0.5
P2 = 0.1

sample one string
sample(["S1", "S12", "S2"], Weights([P1, P12, P2]))

"S12"

8

Tidying up

• The above works but is a bit cumbersome – for example, every time you want to sample
a string, you need to refer to the three probabilities

• Let’s carry out a bit of software engineering to make this nicer to use
• First, we encapsulate the probabilities in a struct of their own:

struct LearningEnvironment
P1::Float64
P12::Float64
P2::Float64

end

• We then define the following function:

function sample_string(x::LearningEnvironment)
sample(["S1", "S12", "S2"], Weights([x.P1, x.P12, x.P2]))

end

sample_string (generic function with 1 method)

• Test the function:

paris = LearningEnvironment(0.4, 0.5, 0.1)
sample_string(paris)

"S12"

Implementing learning

• We now need to tackle point 3, the learning function which updates the learner’s state
• This needs to do three things:

1. Sample a string from the learning environment
2. Pick a grammar to try and parse the string with
3. Update 𝑝 in response to whether parsing was successful or not

Exercise

How would you implement point 2, i.e. picking a grammar to try and parse the incoming
string?

9

Answer

We can again use the sample() function from StatsBase, and define:

function pick_grammar(x::VariationalLearner)
sample(["G1", "G2"], Weights([x.p, 1 - x.p]))

end

pick_grammar (generic function with 1 method)

Implementing learning

• Now it is easy to implement the first two points of the learning function:

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

end

learn! (generic function with 1 method)

• How to implement the last point, i.e. updating 𝑝?

Aside: conditional statements

• Here, we will be helped by conditionals:

if COND1
this is executed if COND1 is true

elseif COND2
this is executed if COND1 is false but COND2 is true

else
this is executed otherwise

end

• Note: only the if block is necessary; elseif and else are optional, and there may be
more than one elseif block

10

Aside: conditional statements

• Try this for different values of number:

number = 1

if number > 0
println("Your number is positive!")

elseif number < 0
println("Your number is negative!")

else
println("Your number is zero!")

end

Comparison ≠ assignment

Important

To compare equality of two values inside a condition, you must use a double equals sign,
==. This is because the single equals sign, =, is already reserved for assigning values to
variables.

if 0 = 1 # throws an error!
println("The world is topsy-turvy")

end

if 0 == 1 # works as expected
println("The world is topsy-turvy")

end

Exercise

• Use an if ... elseif ... else ... end block to finish off our learn! function
• Tip: logical “and” is &&, logical “or” is ||
• Recall:

Learner’s grammar String received Update
𝐺1 𝑠 ∈ 𝐿1 increase 𝑝
𝐺1 𝑠 ∈ 𝐿2 � 𝐿1 decrease 𝑝
𝐺2 𝑠 ∈ 𝐿2 decrease 𝑝

11

Learner’s grammar String received Update
𝐺2 𝑠 ∈ 𝐿1 � 𝐿2 increase 𝑝

Answer

Important! The following function, which we originally used, has a bug! It does not
update the learner’s state with input strings from 𝐿1 ∩ 𝐿2. See below for fixed version.

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

if g == "G1" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end

12

Answer

function learn!(x::VariationalLearner, y::LearningEnvironment)
s = sample_string(y)
g = pick_grammar(x)

if g == "G1" && s != "S2"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s != "S1"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end

learn! (generic function with 1 method)

Testing our code

• Let’s test our code!

bob = VariationalLearner(0.5, 0.01)
paris = LearningEnvironment(0.4, 0.5, 0.1)

learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)
learn!(bob, paris)

0.51489901495

trajectory = [learn!(bob, paris) for t in 1:1000]

1000-element Vector{Float64}:

13

0.5097500248005
0.514652524552495
0.5195059993069701
0.5143109393139004
0.5191678299207614
0.5239761516215538
0.5287363901053382
0.5334490262042848
0.5381145359422419
0.5327333905828194
0.5374060566769913
0.5420319961102213
0.5466116761491191
�
0.8043883364948524
0.7963444531299039
0.7983810085986048
0.7903971985126188
0.7924932265274927
0.7945682942622178
0.7966226113195956
0.7986563852063996
0.7906698213543356
0.7927631231407922
0.7948354919093843
0.7968871369902905

Plotting the learning trajectory

using Plots
plot(1:1000, trajectory)

14

Bibliographical remarks

• For more about the notion of grammar competition, see Kroch (1989), Kroch (1994)
• Variational learner originally from Yang (2000), Yang (2002)
• Learning algorithm itself is old: Bush and Mosteller (1955)

Summary

• You’ve learned a few important concepts today:

– Grammar competition and variational learning
– How to sample objects according to a discrete probability distribution
– How to use conditional statements
– How to make a simple plot of a learning trajectory

• You get to practice these in the homework
• Next week, we’ll take the model to a new level and consider what happens when several

variational learners interact

15

../homework/vl.qmd

References

Bush, Robert R., and Frederick Mosteller. 1955. Stochastic Models for Learning. New York,
NY: Wiley.

Kroch, Anthony S. 1989. “Reflexes of Grammar in Patterns of Language Change.” Language
Variation and Change 1 (3): 199–244. https://doi.org/10.1017/S0954394500000168.

———. 1994. “Morphosyntactic Variation.” In Proceedings of the 30th Annual Meeting of the
Chicago Linguistic Society, edited by K. Beals, 180–201. Chicago, IL: Chicago Linguistic
Society.

Yang, Charles D. 2000. “Internal and External Forces in Language Change.” Language Vari-
ation and Change 12: 231–50. https://doi.org/10.1017/S0954394500123014.

———. 2002. Knowledge and Learning in Natural Language. Oxford: Oxford University
Press.

16

https://doi.org/10.1017/S0954394500000168
https://doi.org/10.1017/S0954394500123014

	Plan
	Grammar competition
	Grammar competition
	Concrete example
	Grammar competition
	Variational learning
	Exercise
	Why this form of update formula?
	Plan
	The struct
	Sampling strings
	Tidying up
	Implementing learning
	Exercise
	Implementing learning
	Aside: conditional statements
	Aside: conditional statements
	Comparison \neq assignment
	Exercise
	Testing our code
	Plotting the learning trajectory
	Bibliographical remarks
	Summary
	References

