Models of language change
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

7 May 2024

Plan

e Up to now, we have implemented an agent that

— uses G, with prob. p and G5 with prob. 1 —p

— can produce strings from both grammars

— can receive such strings produced by other agents and update the value of p corre-
spondingly

e It is now time to look more carefully what happens at the population level when multiple
such agents interact

e In last week’s homework, we encapsulated all our variational learning code in a module
(download here)
o To use this module, we call:!

include("VariationalLearning.j1")
using .VariationallLearning
Population of agents

o Last time, we also saw how an array comprehension can be used to create a whole
population of agents:

pop = [VariationallLearner(0.1, 0.01, 0.4, 0.1) for i in 1:1000]

IThe first line makes Julia aware of the code, i.e. of the module definition. The second one then instructs Julia
to use that module. The dot before the module name is required for complex reasons (simple answer: this
is a module of our own making, not an “official” one).

../homework/modules.qmd
../jl/VariationalLearning.jl

1000-element Vector{Variationallearner}:

VariationalLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
Variationallearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
Variationallearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationalLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
Variationallearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
Variationallearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationalLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner (0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)
VariationallLearner(0.1, 0.01, 0.4, 0.1)

e We also saw that the rand function can be used to pick random agents from the popu-
lation:

rand (pop)

VariationalLearner(0.1, 0.01, 0.4, 0.1)

e With an array comprehension, this allows us to undergo random interactions:

[interact! (rand(pop), rand(pop)) for t in 1:100]

100-element Vector{Float64}:
0.099
0.099

.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099

O O O O O O O O o oo

.099

.099

.099

.099

.099

.099
.10900000000000001
.099

.099

.09801
.10900000000000001
.099

O O O O O OO OO o oo

Exercise

What gets returned is an array of 100 numbers (100-element Vector{Float64}).

What are these numbers, and where do they come from?

@ Answer

They come from learn! via interact!.
Recall that the last line of the learn! function returns the current (i.e. new, after
learning) value of p of the learner:

function learn! (x::Variationallearner, s::String)

return x.p
end

Summary statistics
e But this just gives us the current state of a random speaker
o This is rarely the sort of information we wish to gather
o More useful would be: average p over all agents in the population

¢ A quantity like this is known as a summary statistic — it summarizes the state of the
entire population

Getting the average

e The average, or mean, can be obtained using Julia’s mean function. This is part of the
Statistics module:

using Statistics
my_vector = [1, 2, 3, 4, 5]
mean (my_vector)

3.0

o Note that you could also compute this “by hand”!

sum(my_vector)/length(my_vector)

3.0

Average p
o With our population, we can’t just do:
mean (pop)

e Why? Well, mean takes the average over an array of numbers. But pop is not an array
of numbers — it is an array of VariationalLearner objects.

Exercise

How can we obtain the average p over our pop object?

@ Answer

Once again, the answer is an array comprehension!

mean([speaker.p for speaker in pop]l)

0.10006002999999991

Average p
e Let’s wrap this up as a function:
function average p(x::Array{VariationallLearner})

mean([speaker.p for speaker in x])
end

average_p (generic function with 1 method)

e Note: the type of the argument is Array{VariationalLearner}, which means an array
of elements all of which are VariationalLearners

e We can now simply call:

average_p (pop)

0.10006002999999991

Interacting and summarizing
o Earlier, we used this to evolve the population:
[interact! (rand(pop), rand(pop)) for t in 1:100]
e What if we also want to summarize, so that the resulting array stores the average p

rather than the p of a random agent?
e Problem: array comprehension takes only a single command to the left of the for block

e Solution: a begin ... end block:

history = [begin
interact! (rand(pop), rand(pop))
average_p(pop)
end for t in 1:100]

100-element Vector{Float64}:
0.10002888999999995
.10002788999999994
.10002688999999994
.10002588999999994
.10003488999999995
.10003388999999994
.10003288999999996
.10003188999999994
.10003088999999994
.10002989999999994
.10002889999999993
.10002790999999994
.10002690999999994

O O OO O O OO OO oo

.10002051079999993
.10001951079999995
.10001851079999996
.10001751079999996
.10001651079999996
.10002551079999997
.10002451079999995
.10002353069999995
.10002253069999996
.10002154069999997
.10002054069999995
.10001955069999996

O O OO O O OO OO oo

e We can finally evolve the population, recording its average state at every iteration, for
as many iterations as we wish:?

history2 = [begin
interact! (rand(pop), rand(pop))

2Here, the _ in the upper limit for t is a number separator. It just helps humans read the large number (here,
a million); the compiler ignores it. You could also write 1000000 if you wish (but then I, for one, won’t be
able to tell how many zeroes you have there!).

average_p (pop)
end for t in 1:1_000_000]

e Let’s plot the simulation history (i.e. the evolution of average p over time):

using Plots
plot(1:1_000_000, history2, color=:black, legend=false)

0']'_I 1 1 1 1
0 5 5 5 ¢
2.50x10 5.00x10 7.50%x10 1.00x10

Free tip

o We have plotted a million points here (and Plots also connects them with veeeeery tiny
lines). This is a lot, and may slow your computer down.
o To plot, say, every 1000th point, try:

plot(1:1000:1_100_000, history2[begin:1000:end], color=:black, legend=false)

Exercise

In our simulation, we see the average value of p steadily going up with time. What do you
predict will happen in the future, i.e. if we continued the simulation for, say, another million
time steps?

@ Answer

We would expect the average to keep increasing, as the p of every speaker tends to increase
over time. Why does it tend to keep increasing? Because of the way we initialized the
model: we set the P1 and P2 values for each learner to 0.4 and 0.1, meaning that there
is always more evidence for grammar G than for grammar G,.

Of course, the average value of p, just like each individual p, cannot increase forever.
They have a hard maximum at p = 1, since probabilities cannot be greater than 1. In
fact, the average p plateaus at 1, if we continue the simulation. (Try it!)

Looking at individual learners

e« What if, instead of summarizing the population, we want to look at the histories of
individual learners?

o This is also very easy, using two-dimensional array comprehensions.

e I will be using a much smaller population, for a much shorter simulation, for clarity:

pop = [VariationallLearner(0.1, 0.01, 0.4, 0.1) for i in 1:20]
history = [interact! (rand(pop), 1) for t in 1:100, 1 in pop]

¢ Read this as: for every time step t, for every learner 1 in the population, make a random
speaker speak to 1.

o The result is a matrix (two-dimensional array), here of 100 rows and 20 columns:

pop = [VariationallLearner(0.1, 0.01, 0.4, 0.1) for i in 1:20]
history = [interact! (rand(pop), 1) for t in 1:100, 1 in pop]

100x20 Matrix{Float64}:

0.099 0.109 0.099 0.099 0.099 0.099 0.109
0.09801 0.10791 0.09801 0.10801 0.09801 0.10801 0.10791
0.0970299 0.106831 0.0970299 0.10693 0.0970299 0.10693 0.106831
0.0960596 0.105763 0.0960596 0.105861 0.0960596 0.105861 0.105763
0.095099 0.104705 0.095099 0.104802 0.095099 0.114802 0.104705
0.094148 0.103658 0.094148 0.103754 0.094148 0.113654 0.103658
0.0932065 0.102621 0.0932065 0.102716 0.103207 0.112517 0.112621
0.0922745 0.101595 0.0922745 0.101689 0.102174 0.111392 0.111495
0.0913517 0.100579 0.0913517 0.100672 0.101153 0.110278 0.11038
0.0904382 0.109573 0.0904382 0.0996657 0.100141 0.119176 0.109276
0.0895338 0.108478 0.0895338 0.098669 0.10914 0.117984 0.108184
0.0986385 0.107393 0.0986385 0.0976823 0.108048 0.116804 0.107102

0.0976521 O.

.0682832
.0676004
.0669244
.0662551
.0655926
.0649366
.0642873
.0636444
.073008

.0722779
.0715551
.0708395

O O OO O OO OO oo o
O O O O O O O O O O o o

e FEach column of the matrix represents the history of one learner

106319

.12873

.127443
.136168
.134807
.133459
.132124
.140803
.139395
.138001
.136621
.145255
.143802

O O OO O OO OO o oo

.0976521

.129221
.127929
.12665

.125383
.124129
.122888
.121659
.130442
.129138
.127847
.126568
.125303

.0967055

0.100333
0.0993302
0.108337
0.107253
0.106181
0.105119
0.
0
0
0
0
0

104068

.103027
.101997
.100977
.0999673
.0989676

.106968

0.108478
0.107393
0.106319
0.105256
0.104203
0.103161
0.
0
0
0
0
0

102129

.101108
.100097
.0990961
.0981051
.0971241

e plot() is rather clever and accepts the matrix as argument:

plot (history)

0.200

0.175

0.150

0.125

0.100

0.075

.115636

.177992
.176212
.174449
.182705
.180878
.179069
177278
.185506
.193651
.201714
.209697
.2176

O O OO O O O OO o oo

.106031

.109783
.108685
.107598
.106522
.1056457
.114402
.113258
.112126
.111005
.119895
.118696
.127509

Homework

e In the homework, you get to replicate the above simulations (with the summary statistic
of average p), exploring how variation in model parameters such as population size
and learning rate affects the population’s evolution

o Next week:

— Structured populations (with the help of Agents.jl)
— Info about the final projects

10

../homework/change.qmd

	Plan
	Population of agents
	Exercise
	Summary statistics
	Getting the average
	Average p
	Exercise
	Average p
	Interacting and summarizing
	Free tip
	Exercise
	Looking at individual learners
	Homework

