
Programming best practices
Agent-based modelling, Konstanz, 2024

Henri Kauhanen

21 May 2024

Plan

• This week, we will look at a few practices that have the potential to make your code
better

• Here, “better” can mean:

– more logical organization of code
– better performance (faster running, and/or less memory consumption)

• In addition, we will wrap up the first half of the course and talk about any is-
sues/challenges you may have run into

Note

Today’s lecture requires the following Julia packages:

• Agents
• BenchmarkTools
• Random

It would be a good idea to install them now, if your system does not already have them.

• The “best practices” bit of today’s session is broken down into three major topics:

1. Abstract types, inheritance and multiple dispatch
2. Benchmarking
3. Random numbers

1

Abstract types and inheritance

• Some weeks ago, we defined a variational learner type which lives in an unstructured
population

• Last week, we defined one that lives in a grid space

• Two possible strategies:

1. Name both types VariationalLearner

• pro: we can reuse the functions we’ve written that take VariationalLearner ob-
jects as arguments, such as speak, learn! and interact!

• con 1: we can’t use both types in the same code
• con 2: Julia does not deal well with type redefinitions, forcing a restart when moving

from one definition to the other

2. Give the new type a new name, such as GridVL

• pro: no complaints from Julia
• con: we can’t reuse our functions, since they’re defined for VariationalLearner

objects

• A neat solution to this problem is to start thinking about type hierarchies
• Intuitively: types can have hierarchical relationships, a bit like biological taxonomies

2

Important

From now on, I will use SimpleVL to refer to our original VariationalLearner, i.e. the
type that lives in an unstructured population.
VariationalLearner from now on will denote the supertype of all “variational learnery”
things.

Abstract types and inheritance

• The point of this is: a function can be defined for the supertype, whose subtypes then
inherit that function

• E.g. we can define a sleep function for Mammal
• Both Human and Cat inherit this function, and so we don’t need to define one for them

separately

3

• Similarly, we can define speak for the supertype VariationalLearner
• Then both SimpleVL and GridVL have access to this function

• In Julia such “supertypes” are known as abstract types
• They have no fields; they only exist to define the type hierarchy
• Inheritance relations are defined using a special <: operator
• To use Agents.jl, our VariationalLearner abstract type itself needs to inherit from

AbstractAgent

4

abstract type VariationalLearner <: AbstractAgent end

mutable struct SimpleVL <: VariationalLearner
code goes here...

end

@agent struct GridVL(GridAgent{2}) <: VariationalLearner
code goes here...

end

function speak(x::VariationalLearner)
code goes here...

end

• We can now do things like:

5

bob = SimpleVL(0.1, 0.01, 0.4, 0.1)

speak(bob)

even though speak wasn’t defined for SimpleVL

Multiple dispatch

• What if Cat needs to sleep differently from other Mammals?
• Easy: we simply define a function sleep(x::Cat)
• Other Mammals will use the default function sleep(x::Mammal)

• In Julia, this is called multiple dispatch
• One and the same function (here, sleep) can have multiple definitions depending on the

argument’s type
• These different definitions are known as methods of the function
• When figuring out which method to use, the compiler tries to apply the method that is

deepest in the type hierarchy, moving upwards if such a definition isn’t found

– e.g. in our example calling sleep on Human will trigger the sleep method defined
for Mammal, since no sleep method specific to Human has been defined

6

Our VL code so far

Tip

You can also download this code: VL.jl. To use:

include("VL.jl")
using .VL

If VSCode complains about modules, simply delete the first and last lines of the file and
include it like so:

include("VL.jl")

module VL

Agents.jl functionality
using Agents

we need this package for the sample() function
using StatsBase

we export the following types and functions
export VariationalLearner
export SimpleVL
export GridVL
export speak
export learn!
export interact!
export VL_step!

abstract type
abstract type VariationalLearner <: AbstractAgent end

variational learner type on a 2D grid
@agent struct GridVL(GridAgent{2}) <: VariationalLearner
p::Float64 # prob. of using G1
gamma::Float64 # learning rate
P1::Float64 # prob. of L1 \ L2
P2::Float64 # prob. of L2 \ L1

end

7

../jl/VL.jl

"simple" variational learner in unstructured population
mutable struct SimpleVL <: VariationalLearner
p::Float64 # prob. of using G1
gamma::Float64 # learning rate
P1::Float64 # prob. of L1 \ L2
P2::Float64 # prob. of L2 \ L1

end

makes variational learner x utter a string
function speak(x::VariationalLearner)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.p]))

if g == "G1"
return sample(["S1", "S12"], Weights([x.P1, 1 - x.P1]))

else
return sample(["S2", "S12"], Weights([x.P2, 1 - x.P2]))

end
end

makes variational learner x learn from input string s
function learn!(x::VariationalLearner, s::String)
g = sample(["G1", "G2"], Weights([x.p, 1 - x.p]))

if g == "G1" && s != "S2"
x.p = x.p + x.gamma * (1 - x.p)

elseif g == "G1" && s == "S2"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s != "S1"
x.p = x.p - x.gamma * x.p

elseif g == "G2" && s == "S1"
x.p = x.p + x.gamma * (1 - x.p)

end

return x.p
end

makes two variational learners interact, with one speaking
and the other one learning
function interact!(x::VariationalLearner, y::VariationalLearner)
s = speak(x)
learn!(y, s)

end

8

steps a model
function VL_step!(agent, model)
interlocutor = random_nearby_agent(agent, model)
interact!(interlocutor, agent)

end

end # this closes the module

Benchmarking

• When working on larger simulations, it is often important to know how long some func-
tion takes to run

• It may also be important to know how much memory is consumed
• Both of these things can be measured using the @benchmark macro defined by Bench-

markTools.jl

• Example:

using BenchmarkTools

@benchmark sum(1:1_000_000_000)

BenchmarkTools.Trial: 10000 samples with 1000 evaluations.
Range (min … max): 1.300 ns … 20.200 ns � GC (min … max): 0.00% … 0.00%
Time (median): 1.463 ns � GC (median): 0.00%
Time (mean ± �): 1.507 ns ± 0.625 ns � GC (mean ± �): 0.00% ± 0.00%

� � � � �
�� �
1.3 ns Histogram: frequency by time 1.76 ns <

Memory estimate: 0 bytes, allocs estimate: 0.

All roads lead to Rome, but they’re not all equally fast…

• Suppose we want to calculate the square root of all numbers between 0 and 100,000 and
put them in an array

• One way of doing this:

9

https://juliaci.github.io/BenchmarkTools.jl/stable/
https://juliaci.github.io/BenchmarkTools.jl/stable/

result = [] # empty array
for x in 0:100_000
append!(result, sqrt(x)) # put √x in array

end

@benchmark begin
result = [] # empty array
for x in 0:100_000

append!(result, sqrt(x)) # put √x in array
end

end

BenchmarkTools.Trial: 3136 samples with 1 evaluation.
Range (min … max): 1.236 ms … 4.933 ms � GC (min … max): 0.00% … 70.05%
Time (median): 1.409 ms � GC (median): 0.00%
Time (mean ± �): 1.590 ms ± 514.931 �s � GC (mean ± �): 8.60% ± 14.59%

��������� ���� �
��� �
1.24 ms Histogram: log(frequency) by time 3.88 ms <

Memory estimate: 3.35 MiB, allocs estimate: 100012.

• Another way:

result = zeros(100_000 + 1)
for x in 0:100_000
result[x+1] = sqrt(x) # put √x in array

end

@benchmark begin
result = zeros(100_000 + 1)
for x in 0:100_000

result[x+1] = sqrt(x) # put √x in array
end

end

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min … max): 100.128 �s … 667.903 �s � GC (min … max): 0.00% … 48.33%
Time (median): 103.042 �s � GC (median): 0.00%
Time (mean ± �): 114.405 �s ± 43.802 �s � GC (mean ± �): 4.03% ± 8.75%

10

�� ���������� � �
��� �
100 �s Histogram: log(frequency) by time 381 �s <

Memory estimate: 781.36 KiB, allocs estimate: 2.

• A third possibility:

result = [sqrt(x) for x in 0:100_000]

@benchmark result = [sqrt(x) for x in 0:100_000]

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min … max): 78.196 �s … 674.716 �s � GC (min … max): 0.00% … 52.41%
Time (median): 79.424 �s � GC (median): 0.00%
Time (mean ± �): 88.174 �s ± 33.353 �s � GC (mean ± �): 3.77% ± 8.65%

��� ��� � � �
�� �
78.2 �s Histogram: log(frequency) by time 282 �s <

Memory estimate: 781.36 KiB, allocs estimate: 2.

• A fourth way:

result = sqrt.(0:100_000)

@benchmark result = sqrt.(0:100_000)

BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min … max): 78.410 �s … 687.314 �s � GC (min … max): 0.00% … 50.35%
Time (median): 79.163 �s � GC (median): 0.00%
Time (mean ± �): 87.978 �s ± 34.245 �s � GC (mean ± �): 3.95% ± 8.77%

�� �� � � �
�� �
78.4 �s Histogram: log(frequency) by time 290 �s <

Memory estimate: 781.36 KiB, allocs estimate: 2.

11

Summing up the findings

Procedure Median time Mem. estimate
Growing an array ~1.4 ms ~3.4 MiB
Adding to 0-array ~0.1 ms ~0.8 MiB
Array comprehension ~80 µs ~0.8 MiB
Broadcasting ~80 µs ~0.8 MiB

• Lesson: try to avoid growing (and shrinking!) arrays whenever possible
• Of course, sometimes this is practically unavoidable (such as when adding and removing

agents from a population)
• Another lesson: if procedure X gets repeated very many times in a simulation, try to

make X as efficient as possible

– Procedures which are only carried out once or a few times (such as initializing a
population) don’t matter so much

Random numbers

• In the first lecture, we talked about the importance of (pseudo)random numbers in ABM
simulations

• E.g. whenever an agent needs to be sampled randomly, the computer needs to generate
a random number

• There are two important issues here:

1. Reproducibility – how to obtain the same sequence of “random” numbers if this is
desired

2. Consistency – making sure that whenever a random number is drawn, it is drawn
using the same generator (i.e. from the same sequence)

Reproducibility

• Recall: a PRNG (pseudorandom number generator) generates a deterministic sequence
which appears random

• The sequence is generated from an initial seed number
• If you change the seed, you obtain different sequences
• Normally, when Julia is started, the PRNG is seeded with a different seed every time

– Hence, you obtain different sequences

12

intro.qmd

Reproducibility: illustration

• To illustrate this, suppose you want to toss a coin 10 times. This is easy:

rand(["heads", "tails"], 10)

10-element Vector{String}:
"tails"
"tails"
"tails"
"heads"
"tails"
"heads"
"heads"
"tails"
"tails"
"heads"

• Now restart Julia and execute the same thing. You will get a different result:

here, restart Julia...

rand(["heads", "tails"], 10)

10-element Vector{String}:
"tails"
"tails"
"heads"
"heads"
"heads"
"heads"
"tails"
"tails"
"tails"
"heads"

• If you want to make sure the exact same sample is obtained, you can seed the PRNG
manually after startup

• For example, seed with the number 123:

13

using Random
Random.seed!(123)

rand(["heads", "tails"], 10)

10-element Vector{String}:
"tails"
"tails"
"tails"
"heads"
"tails"
"heads"
"heads"
"tails"
"tails"
"heads"

Reproducibility

• Why would you do this? Wasn’t randomness kind of the point?
• Suppose someone (e.g. your supervisor, or an article reviewer) wants to check that your

code actually produces the results you have reported
• Using a manually seeded PRNG makes this possible

Consistency

• It is possible to have multiple PRNGs running simultaneously in the same code
• This is rarely desired, but may happen by mistake…
• For example, when you call StandardABM, Agents.jl will set up a new PRNG by default
• If your own functions (such as speak or learn!) utilize a different PRNG, you may run

into problems

– For one, it will be difficult to ensure reproducibility

• To avoid this, pass Random.default_rng() as an argument to StandardABM when cre-
ating your model:

using Agents
using Random
include("VL.jl")
using .VL

14

Random.seed!(123)

space = GridSpace((10, 10))

model = StandardABM(GridVL, space; agent_step! = VL_step!,
rng = Random.default_rng())

Reminder: not all agents are humans!

https://youtu.be/UzgMw3SJn2s

Looking ahead

• Homework:

1. Keep thinking about your project!
2. Read Smaldino (2023), chapter 10

• The following two weeks constitute a break for us: the first one is the lecture-free period,
the second one is consolidation week (“Vertiefungswoche”)

• After this break, you need to

1. have a project team (or have decided to work on your own)
2. have at least an initial idea about your project topic

• If you struggle, I’m happy to help! You can always write me an email, and/or come to
see me in my office.

Smaldino, Paul E. 2023. Modeling Social Behavior: Mathematical and Agent-Based Models of
Social Dynamics and Cultural Evolution. Princeton, NJ: Princeton University Press.

15

https://youtu.be/UzgMw3SJn2s

	Plan
	Abstract types and inheritance
	Abstract types and inheritance
	Multiple dispatch
	Our VL code so far
	Benchmarking
	All roads lead to Rome, but they're not all equally fast…
	Summing up the findings
	Random numbers
	Reproducibility
	Reproducibility: illustration
	Reproducibility
	Consistency
	Reminder: not all agents are humans!
	Looking ahead

